985 resultados para Crystallographic Structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inositol polyphosphate 1-phosphatase, inositol monophosphate phosphatase, and fructose 1,6-bisphosphatase share a sequence motif, Asp-Pro-(Ile or Leu)-Asp-(Gly or Ser)-(Thr or Ser), that has been shown by crystallographic and mutagenesis studies to bind metal ions and participate in catalysis. We compared the six alpha-carbon coordinates of this motif from the crystal structures of these three phosphatases and found that they are superimposable with rms deviations ranging from 0.27 to 0.60 A. Remarkably, when these proteins were aligned by this motif a common core structure emerged, defined by five alpha-helices and 11 beta-strands comprising 155 residues having rms deviations ranging from 1.48 to 2.66 A. We used the superimposed structures to align the sequences within the common core, and a distant relationship was observed suggesting a common ancestor. The common core was used to align the sequences of several other proteins that share significant similarity to inositol monophosphate phosphatase, including proteins encoded by fungal qa-X and qutG, bacterial suhB and cysQ (identical to amtA), and yeast met22 (identical to hal2). Evolutionary comparison of the core sequences indicate that five distinct branches exist within this family. These proteins share metal-dependent/Li(+)-sensitive phosphomonoesterase activity, and each predicted tree branch exhibits unique substrate specificity. Thus, these proteins define an ancient structurally conserved family involved in diverse metabolic pathways including inositol signaling, gluconeogenesis, sulfate assimilation, and possibly quinone metabolism. Furthermore, we suggest that this protein family identifies candidate enzymes to account for both the therapeutic and toxic actions of Li+ as it is used in patients treated for manic depressive disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequence analysis of peptides naturally presented by major histocompatibility complex (MHC) class I molecules has revealed allele-specific motifs in which the peptide length and the residues observed at certain positions are restricted. Nevertheless, peptides containing the standard motif often fail to bind with high affinity or form physiologically stable complexes. Here we present the crystal structure of a well-characterized antigenic peptide from ovalbumin [OVA-8, ovalbumin-(257-264), SIINFEKL] in complex with the murine MHC class I H-2Kb molecule at 2.5-A resolution. Hydrophobic peptide residues Ile-P2 and Phe-P5 are packed closely together into binding pockets B and C, suggesting that the interplay of peptide anchor (P5) and secondary anchor (P2) residues can couple the preferred sequences at these positions. Comparison with the crystal structures of H-2Kb in complex with peptides VSV-8 (RGYVYQGL) and SEV-9 (FAPGNYPAL), where a Tyr residue is used as the C pocket anchor, reveals that the conserved water molecule that binds into the B pocket and mediates hydrogen bonding from the buried anchor hydroxyl group could not be likewise positioned if the P2 side chain were of significant size. Based on this structural evidence, H-2Kb has at least two submotifs: one with Tyr at P5 (or P6 for nonamer peptides) and a small residue at P2 (i.e., Ala or Gly) and another with Phe at P5 and a medium-sized hydrophobic residue at P2 (i.e., Ile). Deciphering of these secondary submotifs from both crystallographic and immunological studies of MHC peptide binding should increase the accuracy of T-cell epitope prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lithographic method was used to produce polycrystalline diamond films having highly defined surface geometry, showing an array of diamond tips for possible application as a field emitter device. The films grown in this study used microwave plasma assisted chemical vapour deposition (MACVD) on a silicon substrate; the substrate was then dissolved away to reveal the surface features on the diamond film. It is possible to align the crystallite direction and affect the electron emission properties using a voltage bias to enhance the nucleation process and influence the nuclei to a preferred orientation. This study focuses on the identification of the distribution of crystal directions in the film, using electron backscattering diffraction (EBSD) to identify the crystallographic character of the film surface. EBSD allows direct examination of the individual diamond grains, grains boundaries and the crystal orientation of each individual crystallite. The EBSD maps of the bottom (nucleation side) of the films, following which a layer of film is ion-milled away and the mapping process repeated. The method demonstrates experimentally that oriented nucleation occurs and the thin sections allow the crystal texture to be reconstructed in 3-D. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New tin(IV) complexes of empirical formula, Sn(SNNNS)I-2 (SNNNS = anionic form of the 2,6-diacetylpyridine Schiff bases of S-methyl- or S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. The structure of Sn(dapsme)I-2 has been determined by single crystal X-ray crystallographic structural analysis. The complex has a seven-coordinate distorted pentagonal-bipyramidal geometry with the Schiff base coordinated to the tin(IV) ion as a dinegatively charged pentadentate chelating agent via the pyridine nitrogen atom, the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The ligand occupies the equatorial plane and the iodo ligands are coordinated to the tin(IV) ion at axial positions. The distortion from an ideal pentagonal bipyramidal geometry is attributed to the restricted bite size of the pentadentate ligands. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hitherto, adsorption has been traditionally used to study only the porous structure in disordered materials, while the structure of the solid phase skeleton has been probed by crystallographic methods such as X-ray diffraction. Here we show that for carbons density functional theory, suitably adapted to consider heterogeneity of the pore walls, can be reliably used to probe features of the solid structure hitherto accessibly only approximately even by crystallographic methods. We investigate a range of carbons and determine pore wall thickness distributions using argon adsorption, with results corroborated by X-ray diffraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New copper(II) complexes of general empirical formula, Cu(mpsme)X center dot xCH(3)COCH(3) (mpsme = anionic form of the 6-methyl-2-formylpyridine Schiff base of S-methyldithiocarbazate; X = Cl, N-3, NCS, NO3; x = 0, 0.5) have been synthesized and characterized by IR, electronic, EPR and susceptibility measurements. Room temperature mu(eff) values for the complexes are in the range 1.75-2.1 mu(beta) typical of uncoupled or weakly coupled Cu(II) centres. The EPR spectra of the [Cu(mpsme)X] (X = Cl, N-3, NO3, NCS) complexes reveal a tetragonally distorted coordination sphere around the mononuclear Cu(II) centre. We have exploited second derivative EPR spectra in conjunction with Fourier filtering (sine bell and Hamming functions) to extract all of the nitrogen hyperfine coupling matrices. While the X-ray crystallography of [Cu(mpsme)NCS] reveals a linear polymer in which the thiocyanate anion bridges the two copper(II) ions, the EPR spectra in solution are typical of a magnetically isolated monomeric Cu(II) centres indicating dissociation of the polymeric chain in solution. The structures of the free ligand, Hmpsme and the {[Cu(mpsme)NO3] center dot 0.5CH(3)COCH(3)}(2) and [Cu(mpsme)NCS](n) complexes have been determined by X-ray diffraction. The {[Cu(mpsme)NO3]0.5CH(3)COCH(3)}(2) complex is a centrosymmetric dimer in which each copper atom adopts a five-coordinate distorted square-pyramidal geometry with an N2OS2 coordination environment, the Schiff base coordinating as a uninegatively charged tridentate ligand chelating through the pyridine and azomethine nitrogen atoms and the thiolate, an oxygen atom of a unidentate nitrato ligand and a bridging sulfur atom from the second ligand completing the coordination sphere. The [Cu(mpsme)(NCS)](n) complex has a novel staircase-like one dimensional polymeric structure in which the NCS- ligands bridge two adjacent copper(II) ions asymmetrically in an end-to-end fashion providing its nitrogen atom to one copper and the sulfur atom to the other. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis, characterization and thermal behaviour of some new dimeric allylpalladium (II) complexes bridged by pyrazolate ligands are reported. The complexes [Pd(mu-3, 5-R'(2)pz)(eta(3)-CH2C(R)CH2)](2) [R = H; R'= CH(CH3)(2) (1a); R = H, R' = C(CH3)(3) (1b), R = H; R' = CF3 (1c); R = CH3, R' = CH(CH3)(2) (2a); R = CH3, R' = C(CH3)(3) (2b); and R = CH3, R' = CF3 (2c)] have been prepared by the room temperature reaction of [Pd(eta(3)-CH2C(R)CH2)(acac)](acac = acetylacetonate) with 3,5-disubstituted pyrazoles in acetonitrile solution. The complexes have been characterized by NMR (H-1, C-13{H-1}), FT-IR, and elemental analyses. The structure of a representative complex, viz. 2c, has been established by single-crystal X-ray diffraction. The dinuclear molecule features two formally square planar palladium centres which are bridged by two pyrazole ligands and the coordination of each metal centre is completed by allyl substituents. The molecule has non-crystallographic mirror symmetry. Thermogravimetric studies have been carried out to evaluate the thermal stability of these complexes. Most of the complexes thermally decompose in argon atmosphere to give nanocrystals of palladium, which have been characterized by XRD, SEM and TEM. However, complex 2c can be sublimed in vacuo at 2 mbar without decomposition. The equilibrium vapour pressure of 2c has been measured by the Knudsen effusion technique. The vapour pressure of the complex 2c could be expressed by the relation: In (p/Pa)(+/- 0.06) = -18047.3/T + 46.85. The enthalpy and entropy of vapourization are found to be 150.0 +/- 3 kJ mol(-1) and 389.5 +/- 8 J K-1 mol(-1), respectively. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kunjin virus is a member of the Flavivirus genus and is an Australian variant of West Nile virus. The C-terminal domain of the Kunjin virus NS3 protein displays helicase activity. The protein is thought to separate daughter and template RNA strands, assisting the initiation of replication by unwinding RNA secondary structure in the 3' nontranslated region. Expression, purification and preliminary crystallographic characterization of the NS3 helicase domain are reported. It is shown that Kunjin virus helicase may adopt a dimeric assembly in absence of nucleic acids, oligomerization being a means to provide the helicases with multiple nucleic acid-binding capability, facilitating translocation along the RNA strands. Kunjin virus NS3 helicase domain is an attractive model for studying the molecular mechanisms of flavivirus replication, while simultaneously providing a new basis for the rational development of anti-flaviviral compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peptidic Nucleic Acids (PNAs) are achiral, uncharged nucleic add mimetics, with a novel backbone composed of N-(2-aminoethyl)glycine units attached to the DNA bases through carboxymethylene linkers. With the aim of extending and improving upon the molecular recognition properties of PNAs, the aim of this work was to synthesjse PNA building block intermediates containing a series of substituted purine bases for subsequent use in automated PNA synthesis. Four purine bases: 2,6~diaminopurine (D), isoGuanine (isoG), xanthine (X) and hypoxanthine (H) were identified for incorporation into PNAs targeted to DNA, with the promise of increased hybrid stability over extended pH ranges together with improvements over the use of adenine (A) in duplex formation, and cytosine (C) in triplex formation. A reliable, high-yielding synthesis of the PNA backbone component N -('2- butyloxycarbonyl-aminoethyl)glycinate ethyl ester was establishecl. The precursor N~(2-butyloxycarbonyl)amino acetonitrile was crystallised and analysed by X-ray crystallography for the first time. An excellent refinement (R = 0.0276) was attained for this structure, allowing comparisons with known analogues. Although chemical synthesis of pure, fully-characterised PNA monomers was not achieved, chemical synthesis of PNA building blocks composed of diaminopurine, xanthine and hypoxanthine was completely successful. In parallel, a second objective of this work was to characterise and evaluate novel crystalline intermediates, which formed a new series of substituted purine bases, generated by attaching alkyl substituents at the N9 or N7 sites of purine bases. Crystallographic analysis was undertaken to probe the regiochemistry of isomers, and to reveal interesting structural features of the new series of similarly-substituted purine bases. The attainment of the versatile synthetic intermediate 2,6-dichloro~9- (carboxymethyl)purine ethyl ester, and its homologous regioisomers 6-chloro~9- (carboxymethyl)purine ethyl ester and 6-chloro-7-(carboxymethyl)purine ethyl ester, necessitated the use of X-ray crystallographic analysis for unambiguous structural assignment. Successful refinement of the disordered 2,6-diamino-9-(carboxymethyl) purine ethyl ester allowed comparison with the reported structure of the adenine analogue, ethyl adenin-9-yl acetate. Replacement of the chloro moieties with amino, azido and methoxy groups expanded the internal angles at their point of attachment to the purine ring. Crystallographic analysis played a pivotal role towards confirming the identity of the peralkylated hypoxanthine derivative diethyl 6-oxo-6,7-dihydro-3H-purlne~3,7~djacetate, where two ethyl side chains were found to attach at N3 and N7,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of natural magnetite has been investigated on the basis of previously published X-ray intensity data and a newly acquired, more extensive data base. Both investigations show that the structure does not conform to the centrosymmetrical space group Fd3m, as is normally assumed, but the non-centrosymmetrical space group F43m. The structure refinement provides values for the atom positions, anisotropic thermal parameters and bond lengths. A study of Friedel related pairs of X-ray intensities shows that Friedel's law is violated in magnetite, further confirming that the space group is non-centrosymmetrical. It was found that the octahedral site cations in magnetite do not occupy special positions at the centres of the octahedral interstices as they should under the space group Fd3m, but are displaced along <111 > directions leading to F43m symmetry. A mechanism is known for the origin of these displacements and the likelihood of similar displacements occurring in other natural and synthetic spinels is discussed. The crystal structure of a natural titanomaghemite was determined by a combination of X-ray diffraction and Mõssbauer spectroscopy. This was confirmed as possessing a primitive cubic Bravais lattice with the space group P4332 and the structural formula: Fe3+.0.96 0 0.04 [Fe2+0.23 Fe3+0.99 Ti4+0.42 0 0.37 ] 042 - where 0 represents a cation vacancy. As the above formula shows, there are cation vacancies on both tetrahedral arrl octahedral sites, the majority being restricted to octahedral sltes. No tetrahedral site Fe2+ or Ti4+ was observed. Values for the atom positions, anisotropic thermal parameters and bond lengths have been determined for this particular specimen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fatigue thresholds and slow crack growth rates have been measured in a powder formed nickel-base superalloy from room temperature to 600°C. Two grain sizes were investigated: 5-12 μm and 50 μm. It is shown that the threshold increases with grain size, and the difference is most pronounced at room temperature. Although crack growth rates increase with temperature in both microstructures, the threshold is only temperature dependent in the material with the larger grain size. It is also only in the latter that the room temperature threshold falls when the load ratio is increased from 0.1 to 0.5. At 600°C the higher load ratio causes a 20% reduction in the threshold irrespective of grain size. The results are discussed in terms of surface roughness and oxide-induced crack closure, the former being critically related to the type of crystallographic crack growth, which is in turn shown to be both temperature and stress intensity dependent. © 1983.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aims of this study were to establish the structure of the potent anticonvulsant enaminone methyl 4-(4′-bromophenyl)amino-6-methyl-2- oxocyclohex-3-en-1-oate (E139), and to determine the energetically preferred conformation of the molecule, which is responsible for the biological activity. Materials and Methods: The structure of the molecule was determined by X-ray crystallography. Theoretical ab initio calculations with different basis sets were used to compare the energies of the different enantiomers and to other structurally related compounds. Results: The X-ray crystal structure revealed two independent molecules of E139, both with absolute configuration C11(S), C12(R), and their inverse. Ab initio calculations with the 6-31G, 3-21G and STO-3G basis sets confirmed that the C11(S), C12(R) enantiomer with both substituents equatorial had the lowest energy. Compared to relevant crystal structures, the geometry of the theoretical structures shows a longer C-N and shorter C=O distance with more cyclohexene ring puckering in the isolated molecule. Conclusion: Based on a pharmacophoric model it is suggested that the enaminone system HN-C=C-C=O and the 4-bromophenyl group in E139 are necessary to confer anticonvulsant property that could lead to the design of new and improved anticonvulsant agents. Copyright © 2003 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and spin-crossover magnetic behavior of [FeII16][BF4]2 (1 = isoxazole) and [FeII16][ClO4]2 have been studied. [FeII16][BF4]2 undergoes two reversible spin-crossover transitions at 91 and 192 K, and is the first two-step spin transition to undergo a simultaneous crystallographic phase transition, but does not exhibit thermal hysteresis. The single-crystal structure determinations at 260 [space group P3̄, a = 17.4387(4) Å, c = 7.6847(2) Å] and at 130 K [space group P1̄, a = 17.0901(2) Å, b = 16.7481(2) Å, c = 7.5413(1) Å, α = 90.5309(6)°, β = 91.5231(6)°, γ = 117.8195(8)°] reveal two different iron sites, Fe1 and Fe2, in a 1:2 ratio. The room-temperature magnetic moment of 5.0 μB is consistent with high-spin Fe(II). A plateau in μ(T) having a moment of 3.3 μB centered at 130 K suggests a mixed spin system of some high-spin and some low-spin Fe(II) molecules. On the basis of the Fe−N bond distances at the two temperatures, and the molar fraction of high-spin molecules at the transition plateau, Fe1 and Fe2 can be assigned to the 91 and 192 K transitions, respectively. [FeII16][ClO4]2 [space group P3̄, a = 17.5829(3) Å, c = 7.8043(2) Å, β = 109.820 (3)°, T = 295 K] also possesses Fe1:Fe2 in a 1:2 ratio, and magnetic measurements show a single spin transition at 213 K, indicating that both Fe1 and Fe2 undergo a simultaneous spin transition. [FeII16][ClO4]2 slowly decomposes in solutions containing acetic anhydride to form [FeIII3O(OAc)613][ClO4] [space group I2, a = 10.1547(7) Å, b = 16.5497(11) Å, c = 10.3205(9) Å, β = 109.820 (3)°, T = 200 K]. The isosceles Fe3 unit contains two Fe···Fe distances of 3.2844(1) Å and a third Fe···Fe distance of 3.2857(1) Å. The magnetic data can be fit to a trinuclear model with ℋ = −2J(S1·S2 + S2·S3) − 2J13(S1·S3), where J = −27.1 and J13 = −32.5 cm-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives Understanding the impact of the counterion on the properties of an acidic or basic drug may influence the choice of salt form, especially for less potent drugs with a high drug load per unit dose. The aim of this work was to determine the influence of the hydrogen bonding potential of the counterion on the crystal structure of salts of the poorly soluble, poorly compressible, acidic drug gemfibrozil and to correlate these with mechanical properties. Methods Compacts of the parent drug and the salts were used to determine Young's modulus of elasticity using beam bending tests. Crystal structures were determined previously from X-ray powder diffraction data. Key findings The free acid, tert-butylamine, 2-amino-2-methylpropan-1-ol and 2-amino-2-methylpropan-1, 3-diol salts had a common crystal packing motif of infinite hydrogen-bonded chains with cross-linking between pairs of adjacent chains. The tromethamine (trsi) salt, with different mechanical properties, had a two-dimensional sheet-like network of hydrogen bonds, with slip planes, forming a stiffer compact. Conclusions The type of counter ion is important in determining mechanical properties and could be selected to afford slip and plastic deformation. © 2010 Royal Pharmaceutical Society of Great Britain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methyl tetra-O-acetyl-β-d-glucopyranuronate (1) and methyl tetra-O-acetyl-α-d-glucopyranuronate (3) were isolated as crystalline solids and their crystal structures were obtained. That of the β anomer (1) was the same as that reported by Root et al., while anomer (3) was found to crystallise in the orthorhombic space group P212121 with two independent molecules in the asymmetric unit. No other crystal forms were found for either compound upon recrystallisation from a range of solvents. The α anomer (3) was found to be an impurity in initially precipitated batches of β-anomer (1) in quantities <3%; however, it was possible to remove the α impurity either by recrystallisation or by efficient washing, i.e. the α anomer is not incorporated inside the β anomer crystals. The β anomer (1) was found to grow as prisms or needles elongated in the a crystallographic direction in the absence of the α impurity, while the presence of the α anomer (3) enhanced this elongation.