886 resultados para Crystal defect
Resumo:
Provides information on Pilot Knob State Park, Merrick State Park, Eagle Lake State Park, Rice Lake State Park and Crystal, East and West Twin, and Duck Lakes including history, maps, location, terrain, photos, vegetation and wildlife.
Resumo:
The magnetic properties of BaFe12O19 and BaFe10.2Sn0.74Co0.66O19 single crystals have been investigated in the temperature range (1.8 to 320 K) with a varying field from -5 to +5 T applied parallel and perpendicular to the c axis. Low-temperature magnetic relaxation, which is ascribed to the domain-wall motion, was performed between 1.8 and 15 K. The relaxation of magnetization exhibits a linear dependence on logarithmic time. The magnetic viscosity extracted from the relaxation data, decreases linearly as temperature goes down, which may correspond to the thermal depinning of domain walls. Below 2.5 K, the viscosity begins to deviate from the linear dependence on temperature, tending to be temperature independent. The near temperature independence of viscosity suggests the existence of quantum tunneling of antiferromagnetic domain wall in this temperature range.
Resumo:
The bleeding disorder Bernard-Soulier syndrome (BSS) is caused by mutations in the genes coding for the platelet glycoprotein GPIb/IX receptor. The septin SEPT5 is important for active membrane movement such as vesicle trafficking and exocytosis in non-dividing cells (i.e. platelets, neurons). We report on a four-year-old boy with a homozygous deletion comprising not only glycoprotein Ibβ (GP1BB) but also the SEPT5 gene, located 5' to GP1BB. He presented with BSS, cortical dysplasia (polymicrogyria), developmental delay, and platelet secretion defect. The homozygous deletion of GP1BB and SEPT5, which had been identified by PCR analyses, was confirmed by Southern analyses and denaturing HPLC (DHPLC). The parents were heterozygous for this deletion. Absence of GPIbβ and SEPT5 proteins in the patient's platelets was illustrated using transmission electron microscopy. Besides decreased GPIb/IX expression, flow cytometry analyses revealed impaired platelet granule secretion. Because the bleeding disorder was extremely severe, the boy received bone marrow transplantation (BMT) from a HLA-identical unrelated donor. After successful engraftment of BMT, he had no more bleeding episodes. Interestingly, also his mental development improved strikingly after BMT. This report describes for the first time a patient with SEPT5 deficiency presenting with cortical dysplasia (polymicrogyria), developmental delay, and platelet secretion defect.
Resumo:
Point defects of opposite signs can alternately nucleate on the -1/2 disclination line that forms near the free surface of a confined nematic liquid crystal. We show the existence of metastable configurations consisting of periodic repetitions of such defects. These configurations are characterized by a minimal interdefect spacing that is seen to depend on sample thickness and on an applied electric field. The time evolution of the defect distribution suggests that the defects attract at small distances and repel at large distances.
Resumo:
We study the dynamics of annihilation of point defects in Langmuir monolayers. The absence of hydrodynamic effects allows us to quantitatively relate the asymmetry in defect mobility to the elastic anisotropy of the material, which in turn can be varied through the control of the surface pressure applied to the monolayer. Using the proposed theoretical analysis, we are able to obtain rather elusive equilibrium properties out of relatively simple dynamical measurements. In particular, we measure the elastic constants and their pressure dependence.
Resumo:
Except for the first 2 years since July 29, 1968, Arenal volcano has continuously erupted compositionally monotonous and phenocryst-rich (similar to35%) basaltic andesites composed of plagioclase (plag), orthopyroxene (opx), clinopyroxene (cpx), spinel olivine. Detailed textural and compositional analyses of phenocrysts, mineral inclusions, and microlites reveal comparable complexities in any given sample and identify mineral components that require a minimum of four crystallization environments. We suggest three distinct crystallization environments crystallized low Mg# (<78) silicate phases from andesitic magma but at different physical conditions, such as variable pressure of crystallization and water conditions. The dominant environment, i.e., the one which accounts for the majority of minerals and overprinted all other assemblages near rims of phenocrysts, cocrystallized clinopyroxene (Mg# similar to71-78), orthopyroxene (Mg# similar to71-78), titanomagnetite and plagioclase (An(60) to An(85)). The second environment cocrystallized clinopyroxene (Mg# 71-78), olivine (<Fo(78)), titanomagnetite, and very high An (similar to90) plagioclase, while the third cocrystallized clinopyroxene (Mg# 71-78) with high (>7) Al/Ti and high (>4 wt.%) Al2O3, titanomagnetite with considerable Al2O3 (10-18 wt.%) and possibly olivine but appears to lack plagioclase. A fourth crystallization environment is characterized by clinopyroxene (e.g., Mg#=similar to78-85; Cr2O3=0.15-0.7 wt.%), Al-, Cr-rich spinel olivine (similar toFo(80)), and in some circumstances high-An (>80) plagioclase. This assemblage seems to record mafic inputs into the Arenal system and crystallization at high to low pressures. Single crystals cannot be completely classified as xenocrysts, antecrysts (cognate crystals), or phenocrysts, because they often contain different parts each representing a different crystallization environment and thus belong to different categories. Bulk compositions are mostly too mafic to have crystallized the bulk of ferromagnesian minerals and thus likely do not represent liquid compositions. On the other hand, they are the cumulative products of multiple mixing events assembling melts and minerals from a variety of sources. The driving force for this multistage mixing evolution to generate erupting basaltic andesites is thought to be the ascent of mafic magma from lower crustal levels to subvolcanic depths which at the same time may also go through compositional modification by fractionation and assimilation of country rocks. Thus, mafic magmas become basaltic andesite through mixing, fractionation and assimilation by the time they arrive at subvolcanic depths. We infer new increments of basaltic andesite are supplied nearly continuously to the subvolcanic reservoir concurrently to the current eruption and that these new increments are blended into the residing, subvolcanic magma. Thus, the compositional monotony is mostly the product of repetitious production of very similar basaltic andesite. Furthermore, we propose that this quasi-constant supply of small increments of magma is the fundamental cause for small-scale, decade-long continuous volcanic activity; that is, the current eruption of Arenal is flux-controlled by inputs of mantle magmas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: Monosodium urate monohydrate (MSU) crystal-induced interleukin-1β (IL-1β) secretion is a critical factor in the pathogenesis of gout. However, without costimulation by a proIL-1β-inducing factor, MSU crystals alone are insufficient to induce IL-1β secretion. The responsible costimulatory factors that act as a priming endogenous signal in vivo are not yet known. We undertook this study to analyze the costimulatory properties of myeloid-related protein 8 (MRP-8) and MRP-14 (endogenous Toll-like receptor 4 [TLR-4] agonists) in MSU crystal-induced IL-1β secretion and their relevance in gout. METHODS: MRP-8/MRP-14 was measured in paired serum and synovial fluid samples by enzyme-linked immunosorbent assay (ELISA) and localized in synovial tissue from gout patients by immunohistochemistry. Serum levels were correlated with disease activity, and MSU crystal-induced release of MRPs from human phagocytes was measured. Costimulatory effects of MRP-8 and MRP-14 on MSU crystal-induced IL-1β secretion from phagocytes were analyzed in vitro by ELISA, Western blotting, and polymerase chain reaction. The impact of MRP was tested in vivo in a murine MSU crystal-induced peritonitis model. RESULTS: MRP-8/MRP-14 levels were elevated in the synovium, tophi, and serum of patients with gout and correlated with disease activity. MRP-8/MRP-14 was released by MSU crystal-activated phagocytes and increased MSU crystal-induced IL-1β secretion in a TLR-4-dependent manner. Targeted deletion of MRP-14 in mice led to a moderately reduced response of MSU crystal-induced inflammation in vivo. CONCLUSION: MRP-8 and MRP-14, which are highly expressed in gout, are enhancers of MSU crystal-induced IL-1β secretion in vitro and in vivo. These endogenous TLR-4 ligands released by activated phagocytes contribute to the maintenance of inflammation in gout.
Resumo:
T-cell responses are regulated by activating and inhibiting signals. CD28 and its homologue, cytotoxic T-lymphocyte antigen 4 (CTLA-4), are the primary regulatory molecules that enhance or inhibit T-cell activation, respectively. Recently it has been shown that inhibitory natural killer (NK) cell receptors (NKRs) are expressed on subsets of T cells. It has been proposed that these receptors may also play an important role in regulating T-cell responses. However, the extent to which the NKRs modulate peripheral T-cell homeostasis and activation in vivo remains unclear. In this report we show that NK cell inhibitory receptor Ly49A engagement on T cells dramatically limits T-cell activation and the resultant lymphoproliferative disorder that occurs in CTLA-4-deficient mice. Prevention of activation and expansion of the potentially autoreactive CTLA-4(-/-) T cells by the Ly49A-mediated inhibitory signal demonstrates that NKR expression can play an important regulatory role in T-cell homeostasis in vivo. These results demonstrate the importance of inhibitory signals in T-cell homeostasis and suggest the common biochemical basis of inhibitory signaling pathways in T lymphocytes.
Resumo:
Many researchers have concluded that secondary or delayed ettringite is responsible for serious premature deterioration of concrete highways. In some poorly performing Iowa concretes, ettringite is the most common secondary mineral but its role in premature deterioration is uncertain since some researchers still maintain that secondary ettringite does not itself cause deterioration. The current research project was designed to determine experimentally if it is possible to reduce secondary ettringite formation in concrete by treating the concrete with commercial crystallization inhibitor chemicals. The hypothesis is such that if the amount of ettringite is reduced, there will also be a concomitant reduction of concrete expansion and cracking. If both ettringite formation and deterioration are simultaneously reduced, then the case for ettringite induced expansion/cracking is strengthened. The experiment used four commercial inhibitors - two phosphonates, a polyacrylic acid, and a phosphate ester. Concrete blocks were subjected to continuous immersion, wet/dry and freeze/thaw cycling in sodium sulfate solutions and in sulfate solutions containing an inhibitor. The two phosphonate inhibitors, Dequest 2060 and Dequest 2010, manufactured by Monsanto Co., were effective in reducing ettringite nucleation and growth in concrete. Two other inhibitors, Good-rite K752 and Wayhib S were somewhat effective, but less so than the two phosphonates. Rapid experiments with solution growth inhibition of ettringite without the presence of concrete phases were used to explore the mechanisms of inhibition of this mineral. Reduction of new ettringite formation in concrete blocks also reduced expansion and cracking of the blocks. This relationship clearly links concrete expansion with this mineral - a conclusion that some research workers have disputed despite theoretical arguments for such a relationship and despite numerous observations of ettringite mineralization in prematurely deteriorated concrete highways. Secondary ettringite nucleation and growth must cause concrete expansion because the only known effect of the inhibitor chemicals is to reduce crystal nucleation and growth, and the inhibitors cannot in any other way be responsible for the reduction in expansion. The mechanism of operation of the inhibitors on ettringite reduction is not entirely clear but the solution growth experiments show that they prevent crystallization of a soluble ettringite precursor gel. The present study shows that ettringite growth alone is not responsible for expansion cracking because the experiments showed that most expansion occurs under wet/dry cycling, less under freeze/thaw cycling, and least under continuous soaking conditions. It was concluded from the different amounts of damage that water absorption by newly-formed, minute ettringite crystals is responsible for part of the observed expansion under wet/dry conditions, and that reduction of freeze resistance by ettringite filling of air-entrainment voids is also important in freeze/thaw environments.
Resumo:
We review the key topics of one of the areas with the biggest impact of the last years in the chemical and pharmaceutical industry that is Crystal Engineering. The relevance of polymorphs and co-crystals from different points of view is been highlighted and broadly illustrated by means of several recent examples of studies carried out in this field. In addition, the most suitableinstrumental techniques and the intellectual property implications are reviewed.
Resumo:
In this article the main possibilities of single crystal and powder diffraction analysis using conventional laboratory x-ray sources are introduced. Several examples of applications with different solid samples and in different fields of applications are shown illustrating the multidisciplinary capabilities of both techniques.
Resumo:
Résumé Une caractéristique des cellules eucaryotes est le confinement du matériel génétique (ADN/DNA) dans le noyau. Pour décoder cette information, un ARN messager (mRNA) est d'abord transcrit sous forme d'un ARN prémessager (pré-mRNA). Ce-dernier doit subir plusieurs étapes de maturation pour aboutir à une particule ribonucléoprotéique (mRNP) qui sera exportée vers le cytoplasme et traduite en protéine. La protéine de levure Mex67p et son homologue humain TAP sont des récepteurs d'export médiant la translocation du mRNP au travers des complexes du pore nucléaire (NPC). Mex67p/TAP ne se lient pas directement au mRNA, mais nécessitent la présence de protéines adaptatrices, telles que Yra1p et son homologue humain REF1. Afin d'identifier de nouveaux facteurs impliqués dans l'export des mRNPs ou de nouvelles fonctions pour Yra1p, nous avons effectué un crible génétique avec un mutant thermosensible de Yra1p, GFP-yra 1 -8. Ce mutant présente un défaut d'export des mRNAs et une diminution des niveaux de transcrits du gène rapporteur LacZ ainsi que de certains transcrits endogènes. Nous avons trouvé que la perte de Mlp2p, ou d'une protéine hautement similaire, Mlp1p, restaure la croissance du mutant GFP-yra1-8 à température restrictive. Mlp1p et Mlp2p sont des protéines nucléaires, dont l'homologue humain est TPR. Les Mlp (myosin¬like proteins) ainsi que TPR forment des structures filamenteuses ancrées aux NPC. Bien que la fonction des Mlp ne soit pas clairement définie, un rôle dans la biogenèse et la surveillance des mRNPs a été récemment proposé. Notre étude montre que la perte des Mlp, non seulement restaure la croissance de GFP-yra1-8, mais augmente aussi les niveaux des transcrits LacZ et facilite leur apparition dans le cytoplasme. Des expériences d'immunoprécipitations de la chromatine révèlent que Mlp2p diminue le taux de synthèse du transcrit LacZ dans GFP-yra1-8. Des analyses du transcriptome montrent que Mlp2p réduit aussi les niveaux d'une population de transcrits endogènes dans le mutant. Finalement, des localisations in situ suggèrent que la transcription du rapporteur LacZ a lieu à la périphérie du noyau, à proximité des Mlp. Ainsi, les protéines Mlp pourraient préférentiellement diminuer la transcription de gènes exprimés à la périphérie nucléaire. Nous montrons aussi que Yra1p interagit génétiquement avec Nab2p une protéine liée au mRNA et impliquée dans son export, mais non avec d'autres protéines également impliquées dans l'export des mRNAs. Les résultats obtenus soutiennent un modèle où les protéines Yra1p et Nab2p sont nécessaires à l'arrimage des mRNPs sur la plate-forme des Mlp. Si ces signaux manquent ou sont défectueux, les mRNPs ne peuvent pas poursuivre leur trajet vers le canal central du NPC. Ce bloc induirait par la suite une diminution de la transcription d'une population de gènes potentiellement localisée à la périphérie nucléaire. Dans son ensemble, cette étude suggère que les protéines Mlp établissent un lien entre la transcription de certains mRNAs et leur export au travers du pore nucléaire. Summary A hallmark of the eukaryotic cell is the packaging of DNA in the nucleus. To decode the genetic information, a messenger RNA (mRNA) is first synthesized as a pre-mRNA molecule, which undergoes different maturation steps resulting in an mRNP (messenger RNA ribonucleoprotein), which can be actively transported to the cytoplasm and translated into a protein. Yeast Mex67p and its human homologue TAP are export receptors mediating mRNP translocation through the nuclear pore complex (NPC). The recruitment of Mex67p/TAP to mRNA is mediated by mRNA export adaptors of the evolutionarily conserved REF (RNA and Export Factor binding) family: yeast Yra1p and human REF1. To uncover new functions of Yra1p or new factors implicated in mRNA export, we performed a genetic screen with a themiosensitive (ts) yra1 mutant, GFP-yra1-8. This mutant exhibits mRNA export defects and a decrease in the levels of LacZ reporter and certain endogenous transcripts. We found that the loss of Mlp2p, or the related Mlp1p protein, substantially rescues the growth defect of the GFP-yra1 -8 mutant. Mlp1p and M1p2p are large non-essential proteins, homologous to human TPR, proposed to form intra-nuclear filamentous structures anchored at the NPC. Their role is not clearly defined, but they have been implicated in mRNP biogenesis and surveillance. Our study shows that loss of Mlp proteins not only restores growth of GFP-yra1-8, but also rescues LacZ mRNA levels and increases their appearance in the cytoplasm. Chromatin immunoprecipitation and pulse chase experiments indicate that Mlp2p down-regulates LacZ mRNA synthesis in GFP-yra1-8. DNA micro- array analyses reveal that Mlp2p also reduces the levels of a subset of cellular transcripts in the yra1 mutant strain. In situ localizations suggest that LacZ transcription occurs at the nuclear periphery, in close proximity to Mlp proteins. Thus, Mlp proteins may preferentially down-regulate genes expressed at the nuclear periphery. Finally, we show that Yra1p genetically interacts with the shuttling mRNA-binding protein Nab2p and that loss of Mlp proteins rescues the growth defect of yra1 and nab2, but not other mRNA export mutants. The data support a model in which Nab2p and Yra1p are required for rnRNP docking to the Mlp platform. Lack of these signals prevents mRNPs from crossing the Mlp gate. This block may then negatively feed-back on the transcription of a subset of genes, potentially located at the nuclear envelope. Overall, this study suggests that perinuclear Mlp proteins establish a link between mRNA transcription and export.
Resumo:
Wolfram syndrome is a progressive neurodegenerative disorder transmitted in an autosomal recessive mode. We report two Wolfram syndrome families harboring multiple deletions of mitochondrial DNA. The deletions reached percentages as high as 85-90% in affected tissues such as the central nervous system of one patient, while in other tissues from the same patient and from other members of the family, the percentages of deleted mitochondrial DNA genomes were only 1-10%. Recently, a Wolfram syndrome gene has been linked to markers on 4p16. In both families linkage between the disease locus and 4p16 markers gave a maximum multipoint lod score of 3.79 at theta = 0 (Pi<0.03) with respect to D4S431. In these families, the syndrome was caused by mutations in this nucleus-encoded gene which deleteriously interacts with the mitochondrial genome. This is the first evidence of the implication of both genomes in a recessive disease.