999 resultados para Crop Simulation
Resumo:
Habitat instability associated with seasonal crop succession in broad-acre farming systems presents a problem for the conservation and utilisation of beneficial insects in annual field crops. The present paper describes two experiments used to measure the potential of seven plant species to be utilised as winter refuges to support and conserve the predatory bug Pristhesancus plagipennis (Walker). In the first experiment, replicated plots of canola (Brassica napus ), red salvia (Salvia coccinea ), niger (Guizotia abyssinica ), linseed (Linum usitatissimum ), lupins (Lupinus angustifolius ), and lucerne (Medicago falcata ) were planted in a randomized experiment during Autumn 1998. Upon crop establishment, adults and nymphs of P. plagipennis were released into treatment plots and their numbers were assessed, along with those of their potential prey, throughout the ensuing winter months. Post-release sampling suggested that canola and niger retained a proportion of adult P. plagipennis , while niger, lucerne and canola retained some nymphs. The other plant species failed to support P. plagipennis nymphs and adults postrelease. In the second experiment, niger was compared with two lines of sunflower (Helianthus annus ). Both sunflower lines harboured significantly higher (P < 0.05) densities of P. plagipennis nymphs than did niger. The more successful refuge treatments (sunflower, niger and canola) had an abundance of yellow flowers that were attractive to pollinating insects, which served as supplementary prey on which P. plagipennis were observed to feed. Sunflower and niger also supported high densities of the prey insect Creontiades dilutus (Stal) and provided protective leafy canopies which supplied shelter during the winter months. The potential and limitations for using each plant species as a winter refuge to retain P. plagipennis during winter are discussed.
Stability and simulation-based design of steel scaffolding without using the effective length method
Resumo:
For dynamic simulations to be credible, verification of the computer code must be an integral part of the modelling process. This two-part paper describes a novel approach to verification through program testing and debugging. In Part 1, a methodology is presented for detecting and isolating coding errors using back-to-back testing. Residuals are generated by comparing the output of two independent implementations, in response to identical inputs. The key feature of the methodology is that a specially modified observer is created using one of the implementations, so as to impose an error-dependent structure on these residuals. Each error can be associated with a fixed and known subspace, permitting errors to be isolated to specific equations in the code. It is shown that the geometric properties extend to multiple errors in either one of the two implementations. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
In Part 1 of this paper a methodology for back-to-back testing of simulation software was described. Residuals with error-dependent geometric properties were generated. A set of potential coding errors was enumerated, along with a corresponding set of feature matrices, which describe the geometric properties imposed on the residuals by each of the errors. In this part of the paper, an algorithm is developed to isolate the coding errors present by analysing the residuals. A set of errors is isolated when the subspace spanned by their combined feature matrices corresponds to that of the residuals. Individual feature matrices are compared to the residuals and classified as 'definite', 'possible' or 'impossible'. The status of 'possible' errors is resolved using a dynamic subset testing algorithm. To demonstrate and validate the testing methodology presented in Part 1 and the isolation algorithm presented in Part 2, a case study is presented using a model for biological wastewater treatment. Both single and simultaneous errors that are deliberately introduced into the simulation code are correctly detected and isolated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
In a 2-yr multiple-site field study conducted in western Nebraska during 1999 and 2000, optimum dryland corn (Zea mays L.) population varied from less than 1.7 to more than 5.6 plants m(-2), depending largely on available water resources. The objective of this study was to use a modeling approach to investigate corn population recommendations for a wide range of seasonal variation. A corn growth simulation model (APSIM-maize) was coupled to long-term sequences of historical climatic data from western Nebraska to provide probabilistic estimates of dryland yield for a range of corn populations. Simulated populations ranged from 2 to 5 plants m(-2). Simulations began with one of three levels of available soil water at planting, either 80, 160, or 240 mm in the surface 1.5 m of a loam soil. Gross margins were maximized at 3 plants m(-2) when starting available water was 160 or 240 mm, and the expected probability of a financial loss at this population was reduced from about 10% at 160 mm to 0% at 240 mm. When starting available water was 80 mm, average gross margins were less than $15 ha(-1), and risk of financial loss exceeded 40%. Median yields were greatest when starting available soil water was 240 mm. However, perhaps the greater benefit of additional soil water at planting was reduction in the risk of making a financial loss. Dryland corn growers in western Nebraska are advised to use a population of 3 plants m(-2) as a base recommendation.
Resumo:
Experimental scratch resistance testing provides two numbers: the penetration depth Rp and the healing depth Rh. In molecular dynamics computer simulations, we create a material consisting of N statistical chain segments by polymerization; a reinforcing phase can be included. Then we simulate the movement of an indenter and response of the segments during X time steps. Each segment at each time step has three Cartesian coordinates of position and three of momentum. We describe methods of visualization of results based on a record of 6NX coordinates. We obtain a continuous dependence on time t of positions of each of the segments on the path of the indenter. Scratch resistance at a given location can be connected to spatial structures of individual polymeric chains.
Resumo:
A numeric model has been proposed to investigate the mechanical and electrical properties of a polymeric/carbon nanotube (CNT) composite material subjected to a deformation force. The reinforcing phase affects the behavior of the polymeric matrix and depends on the nanofiber aspect ratio and preferential orientation. The simulations show that the mechanical behavior of a computer generated material (CGM) depends on fiber length and initial orientation in the polymeric matrix. It is also shown how the conductivity of the polymer/CNT composite can be calculated for each time step of applied stress, effectively providing the ability to simulate and predict strain-dependent electrical behavior of CNT nanocomposites.
Resumo:
Coffee cultivation via central-pivot fertigation can lead to fertilizer losses by soil profile internal drainage when water application is excessive and soils have low water retention and cation adsorption capacities. This study analyses the deep water losses from the top 1 m sandy soil layer of east Bahia, Brazil, cultivated with coffee at a high technology level (central-pivot fertigation), using above normal N fertilizer rates. The deep drainage (Q) estimation is made through the application of a climatologic water balance (CWB) program having as input direct measures of irrigation and rainfall, climatological data from weather stations, and measured soil water retention characteristics. The aim of the study is to contribute to the understanding of the hydric regime of coffee crops managed by central-pivot irrigation, analyzing three scenarios (Sc): i) rainfall only, ii) rainfall and irrigation full year, and iii) rainfall and irrigation dry season only. Annual Q values for the 2008/2009 agricultural year were: Sc i = 811.5 mm; Sc ii = 1010.5 mm; and Sc iii = 873.1 mm, so that the irrigation interruption in the wet season reduced Q by 15.7%, without the appearance of water deficit periods. Results show that the use of the CWB program is a convenient tool for the evaluation of Q under the cited conditions.
Resumo:
Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which several ribs and the sternum grow abnormally. Nowadays, the surgical correction is carried out in children and adults through Nuss technic. This technic has been shown to be safe with major drivers as cosmesis and the prevention of psychological problems and social stress. Nowadays, no application is known to predict the cosmetic outcome of the pectus excavatum surgical correction. Such tool could be used to help the surgeon and the patient in the moment of deciding the need for surgery correction. This work is a first step to predict postsurgical outcome in pectus excavatum surgery correction. Facing this goal, it was firstly determined a point cloud of the skin surface along the thoracic wall using Computed Tomography (before surgical correction) and the Polhemus FastSCAN (after the surgical correction). Then, a surface mesh was reconstructed from the two point clouds using a Radial Basis Function algorithm for further affine registration between the meshes. After registration, one studied the surgical correction influence area (SCIA) of the thoracic wall. This SCIA was used to train, test and validate artificial neural networks in order to predict the surgical outcome of pectus excavatum correction and to determine the degree of convergence of SCIA in different patients. Often, ANN did not converge to a satisfactory solution (each patient had its own deformity characteristics), thus invalidating the creation of a mathematical model capable of estimating, with satisfactory results, the postsurgical outcome
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which an abnormal formation of the rib cage gives the chest a caved-in or sunken appearance. Today, the surgical correction of this deformity is carried out in children and adults through Nuss technic, which consists in the placement of a prosthetic bar under the sternum and over the ribs. Although this technique has been shown to be safe and reliable, not all patients have achieved adequate cosmetic outcome. This often leads to psychological problems and social stress, before and after the surgical correction. This paper targets this particular problem by presenting a method to predict the patient surgical outcome based on pre-surgical imagiologic information and chest skin dynamic modulation. The proposed approach uses the patient pre-surgical thoracic CT scan and anatomical-surgical references to perform a 3D segmentation of the left ribs, right ribs, sternum and skin. The technique encompasses three steps: a) approximation of the cartilages, between the ribs and the sternum, trough b-spline interpolation; b) a volumetric mass spring model that connects two layers - inner skin layer based on the outer pleura contour and the outer surface skin; and c) displacement of the sternum according to the prosthetic bar position. A dynamic model of the skin around the chest wall region was generated, capable of simulating the effect of the movement of the prosthetic bar along the sternum. The results were compared and validated with patient postsurgical skin surface acquired with Polhemus FastSCAN system
Resumo:
The objective of this study was to evaluate split nitrogen (N) fertilization of maize applied in band at sowing and top dressing with and without crop rotation, under no-till. The experiment was conducted with six N rates at sowing (0, 20, 30, 40, 50 and 60 kg ha-1) combined with three rates in top dressing (40, 70, 100 kg ha-1) and two management systems: after five cropping sequences of maize and crop rotation (maize + soybean + oat + soybean + corn) in a randomized block design with four replications. The crop rotation system increased yield in approximately 7% in relation to the area without rotation. The split of nitrogen fertilization, in rates above 39 and 54 kg ha-1 at sowing and 70 and 40 kg ha-1 in top dressing, resulted in yield higher than that obtained with the application of 100 kg ha-1 in top dressing. Grain yield was higher with the rates 50 and 70 kg ha-1 of N compared with that obtained with 20 and 100 kg ha-1 at sowing and top dressing, respectively. The rate 70 kg ha-1 of N resulted in the highest yield at the lowest cost compared with the revenues and costs incurred with the rates 40 and 100 kg ha-1.
Resumo:
In this paper, we present a method for estimating local thickness distribution in nite element models, applied to injection molded and cast engineering parts. This method features considerable improved performance compared to two previously proposed approaches, and has been validated against thickness measured by di erent human operators. We also demonstrate that the use of this method for assigning a distribution of local thickness in FEM crash simulations results in a much more accurate prediction of the real part performance, thus increasing the bene ts of computer simulations in engineering design by enabling zero-prototyping and thus reducing product development costs. The simulation results have been compared to experimental tests, evidencing the advantage of the proposed method. Thus, the proposed approach to consider local thickness distribution in FEM crash simulations has high potential on the product development process of complex and highly demanding injection molded and casted parts and is currently being used by Ford Motor Company.
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
NBPT (N-(n-butyl) thiophosphoric triamide), a urease inhibitor, has been reported as one of the most promising compounds to maximize urea nitrogen use in agricultural systems. The objective of this study was to evaluate the performance of irrigated wheat fertilized with urea or urea + NBPT as single or split application. The experiment was conducted from June to October 2006 in Viçosa, MG, Brazil. The experimental design followed a 2×2 factorial scheme, in which urea or urea + NBPT were combined with two modes of application: full dose at sowing (60kg ha-1) or split (20kg ha-1 at sowing + 40kg ha-1 as topdressing at tillering), in randomized blocks with ten replications. The split application of nitrogen fertilization does not improve the yield wheat under used conditions. The use of urease inhibitor improves the grain yield of wheat crop when urea is applied in topdressing at tillering, but its use does not promote difference when urea is applied in the furrow at planting.