979 resultados para Correlation matching techniques
Resumo:
Objective: To introduce a new technique for co-registration of Magnetoencephalography (MEG) with magnetic resonance imaging (MRI). We compare the accuracy of a new bite-bar with fixed fiducials to a previous technique whereby fiducial coils were attached proximal to landmarks on the skull. Methods: A bite-bar with fixed fiducial coils is used to determine the position of the head in the MEG co-ordinate system. Co-registration is performed by a surface-matching technique. The advantage of fixing the coils is that the co-ordinate system is not based upon arbitrary and operator dependent fiducial points that are attached to landmarks (e.g. nasion and the preauricular points), but rather on those that are permanently fixed in relation to the skull. Results: As a consequence of minimizing coil movement during digitization, errors in localization of the coils are significantly reduced, as shown by a randomization test. Displacement of the bite-bar caused by removal and repositioning between MEG recordings is minimal (∼0.5 mm), and dipole localization accuracy of a somatosensory mapping paradigm shows a repeatability of ∼5 mm. The overall accuracy of the new procedure is greatly improved compared to the previous technique. Conclusions: The test-retest reliability and accuracy of target localization with the new design is superior to techniques that incorporate anatomical-based fiducial points or coils placed on the circumference of the head. © 2003 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
This thesis discusses the need for nondestructive testing and highlights some of the limitations in present day techniques. Special interest has been given to ultrasonic examination techniques and the problems encountered when they are applied to thick welded plates. Some suggestions are given using signal processing methods. Chapter 2 treats the need for nondestructive testing as seen in the light of economy and safety. A short review of present day techniques in nondestructive testing is also given. The special problems using ultrasonic techniques for welded structures is discussed in Chapter 3 with some examples of elastic wave propagation in welded steel. The limitations in applying sophisticated signal processing techniques to ultrasonic NDT~ mainly found in the transducers generating or receiving the ultrasound. Chapter 4 deals with the different transducers used. One of the difficulties with ultrasonic testing is the interpretation of the signals encountered. Similar problems might be found with SONAR/RADAR techniques and Chapter 5 draws some analogies between SONAR/RADAR and ultrasonic nondestructive testing. This chapter also includes a discussion on some on the techniques used in signal processing in general. A special signal processing technique found useful is cross-correlation detection and this technique is treated in Chapter 6. Electronic digital compute.rs have made signal processing techniques easier to implement -Chapter 7 discusses the use of digital computers in ultrasonic NDT. Experimental equipment used to test cross-correlation detection of ultrasonic signals is described in Chapter 8. Chapter 9 summarises the conclusions drawn during this investigation.
Resumo:
The aim of this work was to investigate human contrast perception at various contrast levels ranging from detection threshold to suprathreshold levels by using psychophysical techniques. The work consists of two major parts. The first part deals with contrast matching, and the second part deals with contrast discrimination. Contrast matching technique was used to determine when the perceived contrasts of different stimuli were equal. The effects of spatial frequency, stimulus area, image complexity and chromatic contrast on contrast detection thresholds and matches were studied. These factors influenced detection thresholds and perceived contrast at low contrast levels. However, at suprathreshold contrast levels perceived contrast became directly proportional to the physical contrast of the stimulus and almost independent of factors affecting detection thresholds. Contrast discrimination was studied by measuring contrast increment thresholds which indicate the smallest detectable contrast difference. The effects of stimulus area, external spatial image noise and retinal illuminance were studied. The above factors affected contrast detection thresholds and increment thresholds measured at low contrast levels. At high contrast levels, contrast increment thresholds became very similar so that the effect of these factors decreased. Human contrast perception was modelled by regarding the visual system as a simple image processing system. A visual signal is first low-pass filtered by the ocular optics. This is followed by spatial high-pass filtering by the neural visual pathways, and addition of internal neural noise. Detection is mediated by a local matched filter which is a weighted replica of the stimulus whose sampling efficiency decreases with increasing stimulus area and complexity. According to the model, the signals to be compared in a contrast matching task are first transferred through the early image processing stages mentioned above. Then they are filtered by a restoring transfer function which compensates for the low-level filtering and limited spatial integration at high contrast levels. Perceived contrasts of the stimuli are equal when the restored responses to the stimuli are equal. According to the model, the signals to be discriminated in a contrast discrimination task first go through the early image processing stages, after which signal dependent noise is added to the matched filter responses. The decision made by the human brain is based on the comparison between the responses of the matched filters to the stimuli, and the accuracy of the decision is limited by pre- and post-filter noises. The model for human contrast perception could accurately describe the results of contrast matching and discrimination in various conditions.
Resumo:
Digital back-propagation (DBP) has recently been proposed for the comprehensive compensation of channel nonlinearities in optical communication systems. While DBP is attractive for its flexibility and performance, it poses significant challenges in terms of computational complexity. Alternatively, phase conjugation or spectral inversion has previously been employed to mitigate nonlinear fibre impairments. Though spectral inversion is relatively straightforward to implement in optical or electrical domain, it requires precise positioning and symmetrised link power profile in order to avail the full benefit. In this paper, we directly compare ideal and low-precision single-channel DBP with single-channel spectral-inversion both with and without symmetry correction via dispersive chirping. We demonstrate that for all the dispersion maps studied, spectral inversion approaches the performance of ideal DBP with 40 steps per span and exceeds the performance of electronic dispersion compensation by ~3.5 dB in Q-factor, enabling up to 96% reduction in complexity in terms of required DBP stages, relative to low precision one step per span based DBP. For maps where quasi-phase matching is a significant issue, spectral inversion significantly outperforms ideal DBP by ~3 dB.
Resumo:
The supply chain can be a source of competitive advantage for the firm. Simulation is an effective tool for investigating supply chain problems. The three main simulation approaches in the supply chain context are System Dynamics (SD), Discrete Event Simulation (DES) and Agent Based Modelling (ABM). A sample from the literature suggests that whilst SD and ABM have been used to address strategic and planning problems, DES has mainly been used on planning and operational problems., A review of received wisdom suggests that historically, driven by custom and practice, certain simulation techniques have been focused on certain problem types. A theoretical review of the techniques, however, suggests that the scope of their application should be much wider and that supply chain practitioners could benefit from applying them in this broader way.
Resumo:
A vision system is applied to full-field displacements and deformation measurements in solid mechanics. A speckle like pattern is preliminary formed on the surface under investigation. To determine displacements field of one speckle image with respect to a reference speckle image, sub-images, referred to Zones Of Interest (ZOI) are considered. The field is obtained by matching a ZOI in the reference image with the respective ZOI in the moved image. Two image processing techniques are used for implementing the matching procedure: – cross correlation function and minimum mean square error (MMSE) of the ZOI intensity distribution. The two algorithms are compared and the influence of the ZOI size on the accuracy of measurements is studied.
Resumo:
Many Object recognition techniques perform some flavour of point pattern matching between a model and a scene. Such points are usually selected through a feature detection algorithm that is robust to a class of image transformations and a suitable descriptor is computed over them in order to get a reliable matching. Moreover, some approaches take an additional step by casting the correspondence problem into a matching between graphs defined over feature points. The motivation is that the relational model would add more discriminative power, however the overall effectiveness strongly depends on the ability to build a graph that is stable with respect to both changes in the object appearance and spatial distribution of interest points. In fact, widely used graph-based representations, have shown to suffer some limitations, especially with respect to changes in the Euclidean organization of the feature points. In this paper we introduce a technique to build relational structures over corner points that does not depend on the spatial distribution of the features. © 2012 ICPR Org Committee.
Resumo:
Premium Intraocular Lenses (IOLs) such as toric IOLs, multifocal IOLs (MIOLs) and accommodating IOLs (AIOLs) can provide better refractive and visual outcomes compared to standard monofocal designs, leading to greater levels of post-operative spectacle independence. The principal theme of this thesis relates to the development of new assessment techniques that can help to improve future premium IOL design. IOLs designed to correct astigmatism form the focus of the first part of the thesis. A novel toric IOL design was devised to decrease the effect of toric rotation on patient visual acuity, but found to have neither a beneficial or detrimental impact on visual acuity retention. IOL tilt, like rotation, may curtail visual performance; however current IOL tilt measurement techniques require the use of specialist equipment not readily available in most ophthalmological clinics. Thus a new idea that applied Pythagoras’s theory to digital images of IOL optic symmetricality in order to calculate tilt was proposed, and shown to be both accurate and highly repeatable. A literature review revealed little information on the relationship between IOL tilt, decentration and rotation and so this was examined. A poor correlation between these factors was found, indicating they occur independently of each other. Next, presbyopia correcting IOLs were investigated. The light distribution of different MIOLs and an AIOL was assessed using perimetry, to establish whether this could be used to inform optimal IOL design. Anticipated differences in threshold sensitivity between IOLs were not however found, thus perimetry was concluded to be ineffective in mapping retinal projection of blur. The observed difference between subjective and objective measures of accommodation, arising from the influence of pseudoaccommodative factors, was explored next to establish how much additional objective power would be required to restore the eye’s focus with AIOLs. Blur tolerance was found to be the key contributor to the ocular depth of focus, with an approximate dioptric influence of 0.60D. Our understanding of MIOLs may be limited by the need for subjective defocus curves, which are lengthy and do not permit important additional measures to be undertaken. The use of aberrometry to provide faster objective defocus curves was examined. Although subjective and objective measures related well, the peaks of the MIOL defocus curve profile were not evident with objective prediction of acuity, indicating a need for further refinement of visual quality metrics based on ocular aberrations. The experiments detailed in the thesis evaluate methods to improve visual performance with toric IOLs. They also investigate new techniques to allow more rapid post-operative assessment of premium IOLs, which could allow greater insights to be obtained into several aspects of visual quality, in order to optimise future IOL design and ultimately enhance patient satisfaction.
Resumo:
Two blue (450 nm) light–emitting diodes (LED), which only differ in top p-GaN layer growth conditions, were comparatively investigated. I-V, C-V, TLM, Electroluminescence (EL) and Photoluminescence (PL) techniques were applied to clarify a correlation between MOCVD carrier gas and internal properties. The A-structure grown in the pure N2 environment demonstrated better parameters than the B-structure grown in the N2/H2 (1:1) gas mixture. The mixed growth atmosphere leaded to an increase of sheet resistances of p-GaN layer. EL and PL measurements confirmed the advantage of the pure N2 utilization, and C(VR) measurement pointed the increase of static charge concentration near the p-GaN interface in the B structure.
Resumo:
We have proposed a similarity matching method (SMM) to obtain the change of Brillouin frequency shift (BFS), in which the change of BFS can be determined from the frequency difference between detecting spectrum and selected reference spectrum by comparing their similarity. We have also compared three similarity measures in the simulation, which has shown that the correlation coefficient is more accurate to determine the change of BFS. Compared with the other methods of determining the change of BFS, the SMM is more suitable for complex Brillouin spectrum profiles. More precise result and much faster processing speed have been verified in our simulation and experiments. The experimental results have shown that the measurement uncertainty of the BFS has been improved to 0.72 MHz by using the SMM, which is almost one-third of that by using the curve fitting method, and the speed of deriving the BFS change by the SMM is 120 times faster than that by the curve fitting method.
Resumo:
We propose a novel template matching approach for the discrimination of handwritten and machine-printed text. We first pre-process the scanned document images by performing denoising, circles/lines exclusion and word-block level segmentation. We then align and match characters in a flexible sized gallery with the segmented regions, using parallelised normalised cross-correlation. The experimental results over the Pattern Recognition & Image Analysis Research Lab-Natural History Museum (PRImA-NHM) dataset show remarkably high robustness of the algorithm in classifying cluttered, occluded and noisy samples, in addition to those with significant high missing data. The algorithm, which gives 84.0% classification rate with false positive rate 0.16 over the dataset, does not require training samples and generates compelling results as opposed to the training-based approaches, which have used the same benchmark.
Resumo:
Decomposing output into trend and cyclical components is an uncertain exercise and depends on the method applied. It is an especially dubious task for countries undergoing large structural changes, such as transition countries. Despite their deficiencies, however, univariate detrending methods are frequently adopted for both policy oriented and academic research. This paper proposes a new procedure for combining univariate detrending techniques which is based on revisions of the estimated output gaps adjusted by the variance of and the correlation among output gaps. The procedure is applied to the study of the similarity of business cycles between the euro area and new EU Member States.
Resumo:
The strong couplings between different degrees of freedom are believed to be responsible for novel and complex phenomena discovered in transition metal oxides (TMOs). The physical complexity is directly responsible for their tunability. Creating surfaces/interfaces add an additional ' man-made' twist, approaching the quantum phenomena of correlated materials. ^ The dissertation focused on the structural and electronic properties in proximity of surface of three prototype TMO compounds by using three complementary techniques: scanning tunneling microscopy, angle-resolved photoelectron spectroscopy and low energy electron diffraction, particularly emphasized the effects of broken symmetry and imperfections like defects on the coupling between charge and lattice degrees of freedom. ^ Ca1.5Sr0.5RuO4 is a layered ruthenate with square lattice and at the boundary of magnetic/orbital instability in Ca2-xSrxRuO4. That the substitution of Sr 2+ with Ca2+ causing RuO6 rotation narrows the dxy band width and changes the Fermi surface topology. Particularly, the γ(dxy) Fermi surface sheet exhibited hole-like in Ca1.5Sr0.5RuO4 in contrast to electron-like in Sr2RuO4, showing a strong charge-lattice coupling. ^ Na0.75CoO2 is a layered cobaltite with triangular lattice exhibiting extraordinary thermoelectric properties. The well-ordered CoO2-terminated surface with random Na distribution was observed. However, lattice constants of the surface are smaller than that in bulk. The surface density of states (DOS) showed strong temperature dependence. Especially, an unusual shift of the minimum DOS occurs below 230 K, clearly indicating a local charging effect on the surface. ^ Cd2Re2O7 is the first known pyrochlore oxide superconductor (Tc ∼ 1K). It exhibited an unusual second-order phase transition occurring at TS1 = 200 K and a controversial first-order transition at TS2 = 120 K. While bulk properties display large anomalies at TS1 but rather subtle and sample-dependent changes at TS2, the surface DOS near the EF show no change at T s1 but a substantial increase below TS2---a complete reversal as the signature for the transitions. We argued that crystal imperfections, mainly defects, which were considerably enhanced at the surface, resulted in the transition at TS2. ^
Resumo:
In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.
In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.
Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.
Resumo:
This work outlines the theoretical advantages of multivariate methods in biomechanical data, validates the proposed methods and outlines new clinical findings relating to knee osteoarthritis that were made possible by this approach. New techniques were based on existing multivariate approaches, Partial Least Squares (PLS) and Non-negative Matrix Factorization (NMF) and validated using existing data sets. The new techniques developed, PCA-PLS-LDA (Principal Component Analysis – Partial Least Squares – Linear Discriminant Analysis), PCA-PLS-MLR (Principal Component Analysis – Partial Least Squares –Multiple Linear Regression) and Waveform Similarity (based on NMF) were developed to address the challenging characteristics of biomechanical data, variability and correlation. As a result, these new structure-seeking technique revealed new clinical findings. The first new clinical finding relates to the relationship between pain, radiographic severity and mechanics. Simultaneous analysis of pain and radiographic severity outcomes, a first in biomechanics, revealed that the knee adduction moment’s relationship to radiographic features is mediated by pain in subjects with moderate osteoarthritis. The second clinical finding was quantifying the importance of neuromuscular patterns in brace effectiveness for patients with knee osteoarthritis. I found that brace effectiveness was more related to the patient’s unbraced neuromuscular patterns than it was to mechanics, and that these neuromuscular patterns were more complicated than simply increased overall muscle activity, as previously thought.