913 resultados para Corneal biomechanics
Resumo:
This study uses the carapace of emydid turtles to address hypothesized differences between terrestrial and aquatic species. Geometric morphometrics are used to quantify shell shape, and performance is estimated for two shell functions: shell strength and hydrodynamics. Aquatic turtle shells differ in shape from terrestrial turtle shells and are characterized by lower frontal areas and presumably lower drag. Terrestrial turtle shells are stronger than those of aquatic turtles; many-to-one mapping of morphology to function does not entirely mitigate a functional trade-off between mechanical strength and hydrodynamic performance. Furthermore, areas of morphospace characterized by exceptionally poor performance in either of the functions are not occupied by any emydid species. Though aquatic and terrestrial species show no significant differences in the rate of morphological evolution, aquatic species show a higher lineage density, indicative of a greater amount of convergence in their evolutionary history. The techniques employed in this study, including the modeling of theoretical shapes to assess performance in unoccupied areas of morphospace, suggest a framework for future studies of morphological variation.
Resumo:
To analyze the influence of corneal cross-linking (CXL) using ultraviolet-A and riboflavin on corneal drug penetration of topically applied drugs.
Resumo:
To report refractive, topographic, aberrometric, and tomographic outcomes 24 months after corneal cross-linking (CXL) in patients up to 18 years of age with progressive keratoconus.
Resumo:
PURPOSE: To report a case of bilateral central crystalline keratopathy in the anterior stroma occurring 4 years after Intacs implantation. METHODS: A 45-year-old woman underwent bilateral uncomplicated Intacs implantation for myopia. The postoperative course was uneventful. However, between 3 and 4 years after surgery, the patient developed central opacifications of the anterior stroma in both eyes, reducing best spectacle-corrected visual acuity. RESULTS: Intacs were explanted. Confocal microscopy, electron microscopy of the explanted ring segments, and microbiology studies were performed. Opacities were still detectable at the slit-lamp microscope up to 8 months after explantation. CONCLUSIONS: This is the first report on central corneal opacifications after Intacs implantation for myopia. The opacities could be the result of chronic metabolic stress or the beginning of lipid-like changes in another more central corneal localization.
Resumo:
BACKGROUND/AIMS: Rebound tonometry (RT) is performed without anaesthesia with a hand held device. The primary aim was to compare RT with Goldmann applanation tonometry (GAT) and to correlate with central corneal thickness (CCT). The secondary aim was to prove tolerability and practicability of RT under "study conditions" and "routine practice conditions." METHODS: In group 1 (52 eyes/28 patients), all measurements were taken by the same physician, in the same room and order: non-contact optical pachymetry, RT, slit lamp inspection, GAT. Patients were questioned about discomfort or pain. In group 2 (49 eyes/27 patients), tonometry was performed by three other physicians during routine examinations. RESULTS: RT was well tolerated and safe. Intraocular pressure (IOP) ranged between 6 mm Hg and 48 mm Hg. No different trends were found between the groups. RT tended to give slightly higher readings: n = 101, mean difference 1.0 (SD 2.17) mm Hg; 84.1% of RT readings within plus or minus 3 mm Hg of GAT; 95% confidence interval in the Bland-Altman analysis -3.2 mm Hg to +5.2 mm Hg. Both RT and GAT showed a weak positive correlation with CCT (r2 0.028 and 0.025, respectively). CONCLUSIONS: RT can be considered a reliable alternative for clinical screening and in cases where positioning of the head at the slit lamp is impossible or topical preparations are to be avoided.
Resumo:
BACKGROUND: We wished to investigate the toxicity of four immunosuppressant and antimetabolic drugs, which are known to influence postoperative wound healing, on three different human ocular cell lines. METHODS: Acute toxicity to cyclosporin A, azathioprine, mitomicyn C and daunorubicin was assessed in Chang cells by monitoring their uptake of propidium iodide during a 3-h period. Chronic toxicity was assessed by monitoring the proliferation and viability of subconfluent cultures of Chang cells, human corneal endothelial cells (HCECs) and retinal pigmented epithelial (RPE) cells after continuous exposure to the drugs for 7 days. RESULTS: Acute toxicity testing revealed no obvious effects. However, the chronic toxicity tests disclosed a narrow concentration range over which cell proliferation decreased dramatically but calcein metabolism was sustained. Although the three lines reacted similarly to each agent, HCECs were the most vulnerable to daunorubicin and mitomycin. At a daunorubicin concentration of 0.05 microg/ml, a 75% decrease in calcein metabolism (P < 0.001) and a > or = 95% cell loss (P < 0.001) were observed. At a mitomycin concentration of 0.01 mug/ml, cell density decreased by 61% (P < 0.001) without a change in calcein metabolism, but at 0.1 microg/ml, the latter parameter decreased to 12% (P = 0.00014). At this concentration the proliferation of Chang and RPE cells decreased by more than 50%, whilst calcein metabolism was largely sustained. Cyclosporin inhibited cell proliferation moderately at lower concentrations (< 5 microg/ml; P=0.05) and substantially at higher ones, with a corresponding decline in calcein metabolism. Azathioprine induced a profound decrease in both parameters at concentrations above 5 microg/ml. CONCLUSION: Daunorubicin, cyclosporin and azathioprine could be used to inhibit excessive intraocular scarring after glaucoma and vitreoretinal surgery without overly reducing cell viability. The attributes of immunosuppressants lie in their combined antiproliferative and immunomodulatory effects.
Resumo:
This conference paper serves to examine the evolutionary linkages of a brachiating ancestor in humans, the biomechanical and neurophysiology of modern day brachiators, and the human rediscovery of this form of locomotion. Brachiation is arguably one of the most metabolically effective modes of travel by any organism and can be observed most meritoriously in Gibbons. The purpose of the research conducted for this paper was to encourage further exploration of the neurophysiological similarities and differences between humans and non-human primates. The hope is that in spurring more interest and research in this area, further possibilities for rehabilitating brain injury will be developed, or even theories on how to better train our athletes, using the biomechanics and neurophysiology of brachiation as a guide.
Resumo:
Menisci are anchored to the tibia by means of ligament-like structures called meniscal attachments. Failure material properties of bovine meniscal attachments were obtained. There were no significant differences in the structural properties or ultimate stress between the meniscal attachments (p>0.05). Furthermore, Glycosaminoglycan (GAG) fraction and crimping frequency was obtained for each attachment using histology and differential interference contrast (DIC) respectively. Results showed that the anterior attachment’s insertion had the greatest GAG fraction when compared to the posterior attachment’s insertion. Crimp frequency of the collagen fibrils was homogeneous along the length. Moreover, Scanning Electron Microscopy (SEM) technique was used to reveal the morphology of collagen in human meniscal attachments. Its midsubstance was composed of collagen fascicles running parallel to the longitudinal axis, with a few fibrils running obliquely, and others transversely. There were no differences between attachments for crimping angle or length. Since ligamentous-type tissues are comprised mainly of water, the fluid pressure within meniscal horn attachments was measured using a Fiber Optic Microsensor (FOM). Four cadaveric human joints were subjected to 2BW compressive load (ramp) at 0-, 15-, and 30-degrees of flexion for a minute and then the load was hold for 20 minutes (equilibrium). There were significant differences between 0- and 15- (p1– c5) were obtained. Significant differences were found on the straightened collagen fibers coefficient (c5) between MP and LA attachments (p
Resumo:
PURPOSE: To report 2 cases of exogenous Candida glabrata endophthalmitis after penetrating keratoplasty in recipients of corneas from the same donor transplanted on the same day. METHODS: Case reports with ophthalmologic, electron microscopic, and microbiological findings including fungal strain analysis. RESULTS: Two patients developed fungal keratitis and endophthalmitis caused by the same C. glabrata strain within 1 day after penetrating keratoplasty of corneas from the same donor on the same day. Donor-to-host transmission was postulated when eye bank sterility checks were repeatedly negative. CONCLUSIONS: A short death-to-harvesting time, routine donor rim cultures, and respecting of a time interval before transplantation may provide an additional safety feature in dealing with corneal tissue from high-risk donors.
Resumo:
The human spinal column is a complex structure composed of 24 individual vertebrae plus the sacrum. The principal functions of the spine are to protect the spinal cord, to provide mobility to the trunk and to transfer loads from the head and trunk to the pelvis. By nature of a natural sagittal curvature and the relatively flexible intervertebral discs interposed between semi-rigid vertebrae, the spinal column is a compliant structure which can filter out shock and vibrations before they reach the brain. The intrinsic, passive stability of the spine is provided by the discs and surrounding ligamentous structures, and supplemented by the actions of the spinal muscles. The seven intervertebral ligaments which span each pair of adjacent vertebrae and the two synovial joints on each vertebra (facets or zygapophyseal joints) allow controlled, fully three-dimensional motion.