981 resultados para Coprophilous fungus
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
That the symbiotic fungus of leaf-cutting ants only occasionally produces the sexual phase makes their identification confusing. This has occurred so rarely, either in laboratory nests, or in unbalanced field nests. that the possibility of contamination of the fungal garden by other fungi cannot be disregarded. In this paper we describe the formation of several basidiomata in a healthy and free-living nest of the leaf-cutting ant Acromyrmex hispidus fallax. The cultivation in vitro of the sterile mycelia (isolated from the fungal garden) with their typical inflated tips, and the similarity of both forms confirmed by RAPD analysis of their genomic DNA. The fungus was identified as Leucoagaricus gongylophorus.
Resumo:
An extracellular (conidial) and an intracellular (mycelial) alkaline phosphatase from the thermophilic fungus Scytalidium thermophilum were purified by DEAE-cellulose and Concanavalin A-Sepharose chromatography. These enzymes showed allosteric behavior either in the presence or absence of MgCl2, BaCl2, CuCl2, and ZnCl2. All of these ions increased the maximal velocity of both enzymes. The molecular masses of the conidial and mycelial enzymes, estimated by gel filtration, were 162 and 132 kDa, respectively. Both proteins migrated on SDS-PAGE as a single polypeptide of 63 and 58.5 kDa, respectively, suggesting that these enzymes were dimers of identical subunits. The best substrate for the conidial and mycelial phosphatases was p-nitrophenylphosphate, but,beta -glycerophosphate and other phosphorylated compounds also served as substrates. The optimum pH for the conidial and mycelial alkaline phosphatases was 10.0 and 9.5 in the presence of AMPOL buffer, and their carbohydrate contents were about 54% and 63%, respectively. The optimum temperature was 70-75 degreesC for both activities. The enzymes were fully stable up to 1 h at 60 degreesC. These and other properties suggested that the alkaline phosphatases of S. thermophilum might be suitable for biotechnological applications.
Resumo:
Five cadinane sesquiterpenes derivatives were isolated by bioassay-guided fractionation from Phomopis cassiae, an endophytic fungus isolated from Cassia spectabilis. The structures of the two diastereoisomeric 3,9,12-trihydroxycalamenenes (1, 2); 3,12-dihydroxycalamenene (3); 3,12-dihydroxycadalene (4) and 3,11,12-trihydroxycadalene (5) were established on the basis of analyses of ID and 2D NMR and HRTOFMS experiments. Antifungal activity of the isolates was evaluated against Cladosporium sphaerospermum and Cladosporium cladosporioides, revealing 5 as the most active compound. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Lignans from Virola sebifera Aubl., Virola sp., and Otoba parvifolia (Mkfg.) A. Gentry (Myristicaceae) inhibited the in vitro growth of the fungus cultivated by leaf-cutting ants of the species Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae). A comparison of activity among the lignans was obtained.
Resumo:
This study reports on the effects of growth temperature on the secretion and some properties of the xylanase and beta-xylosidase activities produced by a thermotolerant Aspergillus phoenicis. Marked differences were observed when the organism was grown on xylan-supplemented medium at 25 degreesC or 42 degreesC. Production of xylanolytic enzymes reached maximum levels after 72 h of growth at 42 degreesC; and levels were three- to five-fold higher than at 25 degreesC. Secretion of xylanase and beta-xylosidase was also strongly stimulated at the higher temperature. The optimal temperature was 85 degreesC for extracellular and 90 degreesC for intracellular beta-xylosidase activity, independent of the growth temperature. The optimum temperature for extracellular xylanase increased from 50 degreesC to 55 degreesC when the fungus was cultivated at 42 degreesC. At the higher temperature, the xylanolytic enzymes produced by A. phoenicis showed increased thermo stability, with changes in the profiles of pH optima. The chromatographic profiles were distinct when samples obtained from cultures grown at different temperatures were eluted from DEAE-cellulose and Biogel P-60 columns.
Resumo:
Sporothrix schenckii is the etiologic agent of sporotrichosis, a mycosis of world-wide distribution more commonly occurring in tropical regions. The immunological mechanisms involved in the prevention and control of sporotrichosis are not fully understood but apparently include both the humoral and cellular responses. In the present investigation, cellular immunity was evaluated by in vivo and in vitro tests in mice infected with yeast-like forms of S. schenckii. The disease developed systemically and cellular immunity was evaluated for a period of 10 weeks. The soluble antigen utilized in the tests was prepared from yeast form of the fungus through the sonication (20 min: 10 sonications at 50 W at 2-min intervals). Delayed hypersensitivity and lymphocyte transformation tests showed that the cellular immune response was depressed between the 4th and 6th week of infection when the animals were challenged with the soluble fungal antigen. This depression frequently indicates worsening of the disease, with greater involvement of the host. This is a promising field of research for a better understanding of the pathogeny of this mycosis.
Resumo:
A peptide-polysaccharide, a peptide-rhamnomannan, was isolated from the pathogenic yeast form of the fungus Sporothrix schenckii. This substance, which may play a role in fungal virulence, was tested in an animal model of systemic disease, and depression of the immune response was observed in the animals between the 4th and 6th week of infection. Concomitantly, this compound showed mitogenic activity when challenged with normal lymphocytes and was also found to be involved in the inflammatory response. These results provide further information for the understanding of fungal implantation in tissues and of the pathogenicity of this systemic mycosis.
Resumo:
6,8-Dimethoxy-3-(2'-oxo-propyl)-coumarin (1) and 2,4-dihydroxy-6-[(1'E,3'E)-penta-1', 3'-dienyl]-benzaldehyde (2), in addition to the known compound periconicin B (3), were isolated from the ethyl acetate extract of Periconia atropurpurea, an endophytic fungus obtained from the leaves of Xylopia aromatica, a native plant of the Brazilian Cerrado. Their chemical structures were assigned based on analyses of MS, 1D and 2D-NMR spectroscopic experiments. Biological analyses were performed using two mammalian cell lines, human cervix carcinoma (HeLa) and Chinese hamster ovary (CHO). The results showed that compound I had no effect when compared to the control group, which was treated with the vehicle (DMSO). Compound 2 was able to induce a slight increase in cell proliferation of HeLa (37% of increase) and CHO (38% of increase) cell lines. Analysis of compound 3 showed that it has potent cytotoxic activity against both cell lines, with an IC50 of 8.0 mu M. Biological analyses using the phytopathogenic fungi Cladosporium sphaerospermum and C. cladosporioides revealed that also 2 showed potent antifungal activity compared to nystatin. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Background: the soil fungus Rhizoctonia solani anastomosis group 3 (AG-3) is an important pathogen of cultivated plants in the family Solanaceae. Isolates of R. solani AG-3 are taxonomically related based on the composition of cellular fatty acids, phylogenetic analysis of nuclear ribosomal DNA (rDNA) and beta-tubulin gene sequences, and somatic hyphal interactions. Despite the close genetic relationship among isolates of R. solani AG-3, field populations from potato and tobacco exhibit comparative differences in their disease biology, dispersal ecology, host specialization, genetic diversity and population structure. However, little information is available on how field populations of R. solani AG-3 on potato and tobacco are shaped by population genetic processes. In this study, two field populations of R. solani AG-3 from potato in North Carolina (NC) and the Northern USA; and two field populations from tobacco in NC and Southern Brazil were examined using sequence analysis of two cloned regions of nuclear DNA (pP42F and pP89).Results: Populations of R. solani AG-3 from potato were genetically diverse with a high frequency of heterozygosity, while limited or no genetic diversity was observed within the highly homozygous tobacco populations from NC and Brazil. Except for one isolate (TBR24), all NC and Brazilian isolates from tobacco shared the same alleles. No alleles were shared between potato and tobacco populations of R. solani AG-3, indicating no gene flow between them. To infer historical events that influenced current geographical patterns observed for populations of R. solani AG-3 from potato, we performed an analysis of molecular variance (AMOVA) and a nested clade analysis (NCA). Population differentiation was detected for locus pP89 (Phi(ST) = 0.257, significant at P < 0.05) but not for locus pP42F (Phi(ST) = 0.034, not significant). Results based on NCA of the pP89 locus suggest that historical restricted gene flow is a plausible explanation for the geographical association of clades. Coalescent-based simulations of genealogical relationships between populations of R. solani AG-3 from potato and tobacco were used to estimate the amount and directionality of historical migration patterns in time, and the ages of mutations of populations. Low rates of historical movement of genes were observed between the potato and tobacco populations of R. solani AG-3.Conclusion: the two sisters populations of the basidiomycete fungus R. solani AG-3 from potato and tobacco represent two genetically distinct and historically divergent lineages that have probably evolved within the range of their particular related Solanaceae hosts as sympatric species.