960 resultados para Copepod parasites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites have a variety of behavioural effects on their hosts, which can in turn affect species with which the host interacts. Here we review how these trait-mediated indirect effects of parasites can alter the outcomes of invader-native interactions, illustrating with examples from the literature and with particular regard to the invader-native crustacean systems studied in our laboratories. Parasites may potentially inhibit or exacerbate invasions via their effects on host behaviour, in addition to their direct virulence effects on hosts. In several crustacean systems, we have found that parasites influence both host predation rates on intra- and inter-guild prey and host vulnerability to being preyed upon. These trait effects can theoretically alter invasion impact and patterns of coexistence, as they indirectly affect interactions between predators and prey with the potential for further ramifications to other species in the food web. The fitness consequences of parasite-induced trait-mediated effects are rarely considered in traditional parasitological contexts, but demand attention in the context of ecological communities. We can regard these trait effects as a form of cryptic virulence that only becomes apparent when hosts are examined in the context of the other species with which they interact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasitism is hypothesized to reduce reproductive success in heavily parasitized males because females
may preferentially mate with less parasitized males (parasite-mediated sexual selection) or parasites may compromise
male competitiveness. In marine systems, this hypothesis is largely unexplored. This paper provides the first confirmed record of a copepod ectoparasite (Caligus buechlerae Hewitt 1964) on the common triplefin (Forsterygion lapillum) and evaluates the hypothesis that males parasitized with C. buechlerae experience lower reproductive success than unparasitized males (as determined
by the presence and area of eggs within male nests). We found that 38 % of males we surveyed were infected with
at least one C. buechlerae, with a median of two individuals per infected male. About 32 % of males were defending
eggs, with 62.5 % of those males infected with at least one parasite. Males of greater total length (TL) were both
more likely to be infected and more likely to be defending eggs. However, when statistically accounting for the effects
of TL, parasite infection had no effect on the probability of defending eggs, or the average surface area of eggs when
present. Positive covariation in fish length, the presence of eggs and parasite infection observed here potentially suggest
that the importance of parasitic infection on reproductive success may depend upon the strength of selection for larger male body size. Our study is one of the few studies to investigate the effects of ectoparasites on reproductive success in reef fish and also provides a quantitative measure of infection for a widespread species within New Zealand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO: A Malária é causada por parasitas do género Plasmodium, sendo a doença parasitária mais fatal para o ser humano. Apesar de, durante o século passado, o desenvolvimento económico e a implementação de diversas medidas de controlo, tenham permitido erradicar a doença em muitos países, a Malária continua a ser um problema de saúde grave, em particular nos países em desenvolvimento. A Malária é transmitida através da picada de uma fêmea de mosquito do género Anopheles. Durante a picada, os esporozoítos são injetados na pele do hospedeiro, seguindo-se a fase hepática e obrigatória do ciclo de vida. No fígado, os esporozoítos infetam os hepatócitos onde se replicam, dentro de um vacúolo parasitário (VP) e de uma forma imunitária silenciosa, em centenas de merozoitos. Estas novas formas do parasita são as responsáveis por infetar os eritrócitos, iniciando a fase sanguínea da doença, onde se os primeiros sintomas se manifestam, tais como a característica febre cíclica. A fase hepática da doença é a menos estudada e compreendida. Mais ainda, as interações entre o VP e os organelos da células hospedeira estão ainda pouco caracterizados. Assim, neste estudo, as interações entre os organelos endocíticos e autofágicos da célula hospedeira e o VP foram dissecados, observando-se que os anfisomas, que são organelos resultantes da intersecção do dois processos de tráfego intracelular, interagem com o parasita. Descobrimos que a autofagia tem também uma importante função imunitária durante a fase hepática inicial, ao passo, que durante o desenvolvimento do parasita, já numa fase mais tardia, o parasita depende da interação com os endossomas tardios e anfisomas para crescer. Vesiculas de BSA, EGF e LC3, foram, também, observadas dentro do VP, sugerindo que os parasitas são capazes de internalizar material endocítico e autofágico do hospedeiro. Mais ainda, mostramos que esta interação depende da cinase PIKfyve, responsável pela conversão do fosfoinositidio-3-fosfato no fosfoinositidio-3,5-bifosfato, uma vez que inibindo esta cinase o parasita não é capaz de crescer normalmente. Finalmente, mostramos que a proteína TRPML1, uma proteína efetora do fosfoinositidio-3,5-bifosfato, e envolvida no processo de fusão das membranas dos organelos endocíticos e autofágicos, também é necessária para o crescimento do parasita. Desta forma, o nosso estudo sugere que a membrana do VP funde com vesiculas endocíticas e autofágicas tardias, de uma forma dependente do fositidio-3,5-bifosfato e do seu effetor TRPML1, permitindo a troca de material com a célula hospedeira. Concluindo, os nossos resultados evidenciam que o processo autofágico que ocorre na célula hospedeira tem um papel duplo durante a fase hepática da malaria. Enquanto numa fase inicial os hepatócitos usam o processo autofágico como forma de defesa contra o parasita, já durante a fase de replicação o VP funde com vesiculas autofágicas e endocíticas de forma a obter os nutrientes necessários ao seu desenvolvimento.--------- ABSTRACT: Malaria, which is caused by parasites of the genus Plasmodium, is the most deadly parasitic infection in humans. Although economic development and the implementation of control measures during the last century have erradicated the disease from many areas of the world, it remains a serious human health issue, particularly in developing countries. Malaria is transmitted by female mosquitoes of the genus Anopheles. During the mosquito blood meal, Plasmodium spp. sporozoites are injected into the skin dermis of the vertebrate host, followed by an obligatory liver stage. Upon entering the liver, Plasmodium parasites infect hepatocytes and silently replicate inside a host cell-derived parasitophorous vacuole (PV) into thousands of merozoites. These new parasite forms can infect red blood cells initiating the the blood stage of the disease which shows the characteristic febrile malaria episodes. The liver stage is the least characterized step of the malaria infection. Moreover, the interactions between the Plasmodium spp. PV and the host cell trafficking pathways are poorly understood. We dissected the interaction between Plasmodium parasites and the host cell endocytic and autophagic pathways and we found that both pathways intersect and interconnect in the close vicinity of the parasite PV, where amphisomes are formed and accumulate. Interestingly, we observed a clearance function for autophagy in hepatocytes infected with Plasmodium berghei parasites at early infection times, whereas during late liver stage development late endosomes and amphisomes are required for parasite growth. Moreover, we found the presence of internalized BSA, EGF and LC3 inside parasite vacuoles, suggesting that the parasites uptake endocytic and autophagic cargo. Furthermore, we showed that the interaction between the PV and host traffic pathways is dependent on the kinase PIKfyve, which converts the phosphoinositide PI(3)P into PI(3,5)P2, since PIKfyve inhibition caused a reduction in parasite growth. Finally, we showed that the PI(3,5)P2 effector protein TRPML1, which is involved in late endocytic and autophagic membrane fusion, is also required for parasite development. Thus, our studies suggest that the parasite parasitophorous vacuole membrane (PVM) is able to fuse with late endocytic and autophagic vesicles in a PI(3,5)P2- and TRPML1-dependent manner, allowing the exchange of material between the host cell and the parasites, necessary for the rapid development of the latter that is seen during the liver stage of infection. In conclusion, we present evidence supporting a specific and essential dual role of host autophagy during the course of Plasmodium liver infection. Whereas in the initial hours of infection the host cell uses autophagy as a cell survival mechanism to fight the infection, during the replicative phase the PV fuses with host autophagic and endocytic vesicles to obtain nutrients required for parasite growth.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to fully understand an organism's behaviours the interactions between multiple enemies or selective pressures need to be considered, as these interactions are usually far more complex than the simple addition of their effects in isolation. In this thesis, I consider the impact of multiple enemies (fish predators and parasites) on the behaviour of three larval anurans (Lithobates sylvaticus, L. clamitans and L. catesbeianus). I also determine whether species that differ in life-histories and habitat preferences possess different antipredator mechanisms and how this affects species responses to multiple enemies. I show that the three Ranid larvae respond differently to the trade-off imposed by the presence of both fish predators and trematode parasites within the environment. The two more permanent pond breeders (L. clamitans and L. catesbeianus) increased activity when in the combined presence of predators and parasites. In contrast, the temporary pond breeder (L. sylvaticus) decreased activity in the combined presence of predator and parasites, in the same manner as they responded to fish alone. Further, the presence of fish along with parasites increased the susceptibility of both L. sylvaticus and L. clamitans to trematode infection, whereas parasite infection in L. catesbeianus was unaffected by the presence of fish. A second experiment to assess palatability of the three anuran species to fish, revealed a range of palatabilities, with L. catesbeianus being least palatable, L. clamitans being somewhat unpalatable, and L. sylvaticus being highly palatable. This result helps to explain the species differences in tthe observed behaviour to the combined presence of fish and parasites. In conclusion, the results from this study highlight the importance of considering multiple selective pressures faced by organisms and how this shapes their behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The great number of parasitic species of marine and brackishwater animals that have been described indicates that parasites play an important part in the ecology of the oceans and brackishwaters. Jnspite of their importance, marine and brackish parasites are probably the least known group of organisms. Considering the large number of marine and brackishwater hosts, especially in the tropics, it is no exaggeration to say that the description of marine and brackishwater parasites has hardly begun (Rohde, 1982). With this view in mind, an attempt has been made to study the ecobiology of the helminth parasites of finfishes and shellfishes of eochin waters with special reference to digenetic trematodes. The work is broadly divided into three chapters, Chapter 1 consists of a description of the study area, prevalence of infection and concurrent infections with helminth parasites, seasonal variation, host specificity> and zoogeography of digenetic trematodes; Chapter II deals with the systematics of digenetic trematodes; and Chapter III deals with studies on larval trematodes from molluscs and crustacea, adult from a molluscan host, life-cycle, biology and histopathology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Livestock production contributes substantially to the livelihoods of poor rural farmers in Pakistan; strengthening pastoral communities plays an imperative role in the country’s thrive for poverty alleviation. Intestinal helminths constitute a major threat for pastoral livestock keepers in the whole country because chronic infestation leads to distinct losses in livestock productivity, particularly the growth of young animals. Synthetic anthelmintics have long been considered the only effective way of controlling this problem but high prices, side effects and chemical residues/toxicity problems, or development of resistance, lead to their very limited use in many pastoral systems. Additionally, poor pastoralists in remote areas of Pakistan hardly have access to appropriate anthelmintic drugs, which are also relatively expensive due to the long routes of transportation. The search for new and more sustainable ways of supporting livestock keepers in remote areas has given rise to studies of ethno-botanicals or traditional plant-based remedies to be used in livestock health care. Plant-based remedies are cheap or free of cost, environmentally safe and generally create no problem of drug resistance; they thus might substitute allopathic drugs. Furthermore, these remedies are easily available in remote areas and simple to prepare and/or administer. Cholistan desert is a quite poor region of Pakistan and the majority of its inhabitants are practicing a nomadic life. The region’s total livestock population (1.29 million heads) is almost twice that of the human population. Livestock husbandry is the primordial occupation of the communities and traditionally wealth assessment was based on the number of animals, especially goats and sheep, owned by an individual. Fortunately, about 60% of this desert region is richly endowed with highly adapted grasses, shrubs and trees. This natural flora has a rich heritage of scientifically unexplored botanical pharmacopoeia. Against this background, the present research project that was conducted under the umbrella of the International Center for Development and Decent Work at Kassel University, focused on a development aspect: in the Cholistan desert region it was firstly examined how pastoralists manage their livestock, which major health problems they face for the different animal species, and which of the naturally occurring plants they use for the treatment of animal diseases (Chapter 2). For this purpose, a baseline survey was carried out across five locations in Cholistan, using a structured questionnaire to collect data from 100 livestock farmers (LF) and 20 local healers (LH). Most of LF and LH were illiterate (66%; 70%). On average, LH had larger herds (109 animals) than LF (85 animals) and were more experienced in livestock husbandry and management. On average LF spent about 163 Euro per year on the treatment of their livestock, with a huge variability in expenditures. Eighty-six traditional remedies based on 64 plants belonging to 43 families were used. Capparaceae was the botanical family with the largest number of species used (4), followed by Chenopodiaceae, Poaceae, Solanaceae and Zygophyllaceae (3). The plants Capparis decidua (n=55 mentions), Salsola foetida (n=52), Suaeda fruticosa (n=46), Haloxylon salicornicum (n=42) and Haloxylon recurvum (n=39) were said to be most effective against the infestations with gastrointestinal parasites. Aerial parts (43%), leaves (26%), fruits (9%), seeds and seed oils (9%) were the plant parts frequently used for preparation of remedies, while flowers, roots, bulbs and pods were less frequently used (<5%). Common preparations were decoction, jaggery and ball drench; oral drug administration was very common. There was some variation in the doses used for different animal species depending on age, size and physical condition of the animal and severity of the disease. In a second step the regionally most prevalent gastrointestinal parasites of sheep and goats were determined (Chapter 3) in 500 animals per species randomly chosen from pastoral herds across the previously studied five localities. Standard parasitological techniques were applied to identify the parasites in faecal samples manually collected at the rectum. Overall helminth prevalence was 78.1% across the 1000 animals; pure nematode infestations were most prevalent (37.5%), followed by pure trematode (7.9%), pure cestode (2.6%) and pure protozoa infestations (0.8%). Mixed infestations with nematodes and trematodes occurred in 6.4% of all animals, mixed nematode-cestode infestations in 3.8%, and all three groups were found in 19.1% of the sheep and goats. In goats more males (81.1%) than females (77.0%) were infested, the opposite was found in sheep (73.6% males, 79.5% females). Parasites were especially prevalent in suckling goats (85.2%) and sheep (88.5%) and to a lesser extent in young (goats 80.6%, sheep 79.3%) and adult animals (goats 72.8%, sheep 73.8%). Haemonchus contortus, Trichuris ovis and Paramphistomum cervi were the most prevalent helminths. In a third step the in vitro anthelmintic activity of C. decidua, S. foetida, S. fruticosa, H. salicornicum and H. recurvum (Chapter 2) was investigated against adult worms of H. contortus, T. ovis and P. cervi (Chapter 3) via adult motility assay (Chapter 4). Various concentrations ranging from 7.8 to 500 mg dry matter/ml of three types of extracts of each plant, i.e. aqueous, methanol, and aqueous-methanol (30:70), were used at different time intervals to access their anthelmintic activity. Levamisol (0.55 mg/ml) and oxyclozanide (30 mg/ml) served as positive and phosphate-buffered saline as negative control. All extracts exhibited minimum and maximum activity at 2 h and 12 h after parasite exposure; the 500 mg/ml extract concentrations were most effective. Plant species (P<0.05), extract type (P<0.01), parasite species (P<0.01), extract concentration (P<0.01), time of exposure (P<0.01) and their interactions (P<0.01) had significant effects on the number of immobile/dead helminths. From the comparison of LC50 values it appeared that the aqueous extract of C. decidua was more potent against H. contortus and T. ovis, while the aqueous extract of S. foetida was effective against P. cervi. The methanol extracts of H. recurvum were most potent against all three types of parasites, and its aqueous-methanol extract was also very effective against T. ovis and P. cervi. Based on these result it is concluded that the aqueous extract of C. decidua, as well as the methanol and aqueous-methanol extract of H. recurvum have the potential to be developed into plant-based drugs for treatment against H. contortus, T. ovis and P. cervi infestations. Further studies are now needed to investigate the in vivo anthelmintic activity of these plants and plant extracts, respectively, in order to develop effective, cheap and locally available anthelmintics for pastoralists in Cholistan and neighboring desert regions. This will allow developing tangible recommendations for plant-based anthelminthic treatment of sheep and goat herds, and by this enable pastoralists to maintain healthy and productive flocks at low costs and probably even manufacture herbal drugs for marketing on a regional scale.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutualisms are interspecific interactions in which both players benefit. Explaining their maintenance is problematic, because cheaters should outcompete cooperative conspecifics, leading to mutualism instability. Monoecious figs (Ficus) are pollinated by host-specific wasps (Agaonidae), whose larvae gall ovules in their "fruits'' (syconia). Female pollinating wasps oviposit directly into Ficus ovules from inside the receptive syconium. Across Ficus species, there is a widely documented segregation of pollinator galls in inner ovules and seeds in outer ovules. This pattern suggests that wasps avoid, or are prevented from ovipositing into, outer ovules, and this results in mutualism stability. However, the mechanisms preventing wasps from exploiting outer ovules remain unknown. We report that in Ficus rubiginosa, offspring in outer ovules are vulnerable to attack by parasitic wasps that oviposit from outside the syconium. Parasitism risk decreases towards the centre of the syconium, where inner ovules provide enemy-free space for pollinator offspring. We suggest that the resulting gradient in offspring viability is likely to contribute to selection on pollinators to avoid outer ovules, and by forcing wasps to focus on a subset of ovules, reduces their galling rates. This previously unidentified mechanism may therefore contribute to mutualism persistence independent of additional factors that invoke plant defences against pollinator oviposition, or physiological constraints on pollinators that prevent oviposition in all available ovules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Severe malarial anaemia is a major complication of malaria infection and is multifactorial resulting from loss of circulating red blood cells (RBCs) from parasite replication, as well as immune-mediated mechanisms. An understanding of the causes of severe malarial anaemia is necessary to develop and implement new therapeutic strategies to tackle this syndrome of malaria infection. Methods: Using analysis of variance, this work investigated whether parasite-destruction of RBCs always accounts for the severity of malarial anaemia during infections of the rodent malaria model Plasmodium chabaudi in mice of a BALB/c background. Differences in anaemia between two different clones of P. chabaudi were also examined. Results: Circulating parasite numbers were not correlated with the severity of anaemia in either BALB/c mice or under more severe conditions of anaemia in BALB/c RAG2 deficient mice (lacking T and B cells). Mice infected with P. chabaudi clone CB suffered more severe anaemia than mice infected with clone AS, but this was not correlated with the number of parasites in the circulation. Instead, the peak percentage of parasitized RBCs was higher in CB-infected animals than in AS-infected animals, and was correlated with the severity of anaemia, suggesting that the availability of uninfected RBCs was impaired in CB-infected animals. Conclusion: This work shows that parasite numbers are a more relevant measure of parasite levels in P. chabaudi infection than % parasitaemia, a measure that does not take anaemia into account. The lack of correlation between parasite numbers and the drop in circulating RBCs in this experimental model of malaria support a role for the host response in the impairment or destruction of uninfected RBC in P. chabaudi infections, and thus development of acute anaemia in this malaria model.