952 resultados para Controlled branching processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Many ecologically important chemical transformations in the ocean are controlled by biochemical enzyme reactions in plankton. Nitrogenase regulates the transformation of N2 to ammonium in some cyanobacteria and serves as the entryway for N2 into the ocean biosphere. Nitrate reductase controls the reduction of NO3 to NO2 and hence new production in phytoplankton. The respiratory electron transfer system in all organisms links the carbon oxidation reactions of intermediary metabolism with the reduction of oxygen in respiration. Rubisco controls the fixation of CO2 into organic matter in phytoplankton and thus is the major entry point of carbon into the oceanic biosphere. In addition to these, there are the enzymes that control CO2 production, NH4 excretion and the fluxes of phosphate. Some of these enzymes have been recognized and researched by marine scientists in the last thirty years. However, until recently the kinetic principles of enzyme control have not been exploited to formulate accurate mathematical equations of the controlling physiological expressions. Were such expressions available they would increase our power to predict the rates of chemical transformations in the extracellular environment of microbial populations whether this extracellular environment is culture media or the ocean. Here we formulate from the principles of bisubstrate enzyme kinetics, mathematical expressions for the processes of NO3 reduction, O2 consumption, N2 fixation, total nitrogen uptake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]Two cryopreservation methods, controlled cooling and encapsulation/vitrification, were studied in order to find an appropriate protocol to maintain microalgae cultures by exposing them to ultra-low temperatures (cryogenics). This study has shown that the most efficient cryopreserving method is the use of cryoprotectants, being Glycerol and DMSO the best options for this procedure, and dismissing the encapsulation/vitrification method due to the low effectiveness, which results in a low post-thaw viability rate and a higher demanding of labour and consumables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zusammenfassung Um zu einem besseren Verständnis des Prozesses der Biomineralisation zu gelangen, muss das Zusammenwirken der verschiedenen Typen biologischer Makromoleküle, die am Keimbildungs- und Wachstumsprozess der Minerale beteiligt sind, berücksichtigt werden. In dieser Arbeit wird ein neues Modellsystem eingeführt, das aus einem SAM (self-assembled monolayer) mit verschiedenen Funktionalitäten und unterschiedlichen, gelösten Makromolekülen besteht. Es konnte gezeigt werden, dass die Kristallisation von Vaterit (CaCO3) sowie Strontianit (SrCO3) Nanodrähten der Präsenz von Polyacrylat in Kooperation mit einer COOH-funktionalisierten SAM-Oberfläche zugeschrieben werden kann. Die Kombination bestehend aus einer polaren SAM-Oberfläche und Polyacrylat fungiert als Grenzfläche für die Struktur dirigierende Kristallisation von Nanodraht-Kristallen. Weiter konnte gezeigt werden, dass die Phasenselektion von CaCO3 durch die kooperative Wechselwirkung zwischen einer SAM-Oberfläche und einem daran adsorbierten hb-Polyglycerol kontrolliert wird. Auch die Funktionalität einer SAM-Oberfläche in Gegenwart von Carboxymethyl-cellulose übt einen entscheidenden Einfluss auf die Phasenselektion des entstehenden Produktes aus. In der vorliegenden Arbeit wurden Untersuchungen an CaCO3 zur homogenen Keimbildung, zur Nukleation in Gegenwart eines Proteins sowie auf Kolloiden, die als Template fungieren, mittels Kleinwinkel-Neutronenstreuung durchgeführt. Die homogene Kristallisation in wässriger Lösung stellte sich als ein mehrstufiger Prozess heraus. In Gegenwart des Eiweißproteins Ovalbumin konnten drei Phasen identifiziert werden, darunter eine anfänglich vorhandene amorphe sowie zwei kristalline Phasen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently pi-conjugated polymers are considered as technologically interesting materials to be used as functional building elements for the development of the new generation of optoelectronic devices. More specifically during the last few years, poly-p-phenylene materials have attracted considerable attention for their blue photoluminescence properties. This Thesis deals with the optical properties of the most representative blue light poly-p-phenylene emitters such as poly(fluorene), oligo(fluorene), poly(indenofluorene) and ladder-type penta(phenylene) derivatives. In the present work, laser induced photoluminescence spectroscopy is used as a major tool for the study of the interdependence between the dynamics of the probed photoluminescence, the molecular structures of the prepared polymeric films and the presence of chemical defects. Complementary results obtained by two-dimensional wide-angle X-ray diffraction are reported. These findings show that the different optical properties observed are influenced by the intermolecular solid-state interactions that in turn are controlled by the pendant groups of the polymer backbone. A significant feedback is delivered regarding the positive impact of a new synthetic route for the preparation of a poly(indenofluorene) derivative on the spectral purity of the compound. The energy transfer mechanisms that operate in the studied systems are addressed by doping experiments. After the evaluation of the structure/property interdependence, a new optical excitation pathway is presented. An efficient photon low-energy up-conversion that sensitises the blue emission of poly(fluorene) is demonstrated. The observed phenomenon takes place in poly(fluorene) derivatives hosts doped with metallated octaethyl porphyrins, after quasi-CW photoexcitation of intensities in the order of kW/cm2. The up-conversion process is parameterised in terms of temperature, wavelength excitation and central metal cation in the porphyrin ring. Additionally the observation of the up-conversion is extended in a broad range of poly-p-phenylene blue light emitting hosts. The dependence of the detected up-conversion intensity on the excitation intensity and doping concentration is reported. Furthermore the dynamics of the up-conversion intensity are monitored as a function of the doping concentration. These experimental results strongly suggest the existence of triplet-triplet annihilation events into the porphyrin molecules that are subsequently followed by energy transfer to the host. After confirming the occurrence of the up-conversion in solutions, cyclic voltammetry is used in order to show that the up-conversion efficiency is partially determined from the energetic alignment between the HOMO levels of the host and the dopant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le ragioni della delocalizzazione sono molteplici e di differente natura. Si delocalizza, in primo luogo, per ragioni di stampo economico, finanziario eccetera, ma questa spinta naturale alla delocalizzazione è controbilanciata, sul piano strettamente tributario, dall’esigenza di preservare il gettito e da quella di controllare la genuinità della delocalizzazione medesima. E’ dunque sul rapporto tra “spinte delocalizzative” dell’impresa, da un lato, ed esigenze “conservative” del gettito pubblico, dall’altro, che si intende incentrare il presente lavoro. Ciò alla luce del fatto che gli strumenti messi in campo dallo Stato al fine di contrastare la delocalizzazione (più o meno) artificiosa delle attività economiche devono fare i conti con i principi comunitari introdotti con il Trattato di Roma e tratteggiati negli anni dalla giurisprudenza della Corte di Giustizia. In quest’ottica, la disciplina delle CFC costituisce un ottimo punto di partenza per guardare ai fenomeni di produzione transnazionale della ricchezza e agli schemi di ordine normativo preposti alla tassazione di codesta ricchezza. Ed infatti, le norme sulle CFC non fanno altro che omogeneizzare un sistema che, altrimenti, sarebbe lasciato alla libera iniziativa degli uffici fiscali. Tale “normalizzazione”, peraltro, giustifica le esigenze di apertura che sono incanalate nella disciplina degli interpelli disapplicativi. Con specifico riferimento alla normativa CFC, assumono particolare rilievo la libertà di stabilimento ed il principio di proporzionalità anche nella prospettiva del divieto di abuso del diritto. L’analisi dunque verterà sulla normativa CFC italiana con l’intento di comprendere se codesta normativa, nelle sue diverse sfaccettature, possa determinare situazioni di contrasto con i principi comunitari. Ciò anche alla luce delle recenti modifiche introdotte dal legislatore con il d.l. 78/2009 in un quadro normativo sempre più orientato a combattere le delocalizzazioni meramente fittizie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pearls are an amazing example of calcium carbonate biomineralization. They show a classic brick and mortar internal structure in which the predominant inorganic part is composed by aragonite and vaterite tablets. The organic matrix is disposed in concentric layers tightly associated to the mineral structures. Freshwater cultivate pearls (FWCPs) and shells nacreous layers of the Chinese mussel Hyriopsis cumingii were demineralized using an ion exchange resin in order to isolate the organic matrix. From both starting materials a soluble fraction was obtained and further analyzed. The major component of the soluble extracts was represented by a similar glycoprotein having a molecular weight of about 48 kDa in pearls and 44 kDa in shells. Immunolocalization showed their wide distribution in the organic sheet surrounding calcium carbonate tablets of the nacre and in the interlamellar and intertabular matrix. These acidic glycoprotein also contained inside the aragonite platelets, are direct regulators during biomineralization processes, participating to calcium carbonate precipitation since the nucleation step. Selective calcium carbonate polymorph precipitation was performed using the two extracts. The polysaccharides moiety was demonstrate to be a crucial factor in polymorphs selection. In particular, the higher content in sugar groups found in pearls extract was responsible of stabilization of the high energetic vaterite during the in vitro precipitation assay; while irregular calcite was obtained using shells protein. Furthermore these polypeptides showed a carbonic anhydrase activity that, even if not directly involved in polymorphs determination, is an essential regulator in CaCO3 formation by means of carbonate anions production. The structural and functional characterization of the proteins included in biocomposites, gives important hints for understanding the complicated process of biomineralization. A better knowledge of this natural mechanism can offer new strategies for producing environmental friendly materials with controlled structures and enhanced chemical-physical features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Für viele Anwendungen von Nanomaterialien sind maßgeschneiderte Produkte wün-schenswert, weswegen ein tiefgreifendes und genaues Wissen der Reaktionsabläufe, die zu diesen Produkten führen, unabdingbar ist. Um dies im Fall von SnO2 zu erreichen, behandelt diese Arbeit die kontrollierte Synthese und genaue Charakterisierung von Nanopartikeln von Zinn(IV) Oxid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents results from experimental investigations of several different atmospheric pressure plasmas applications, such as Metal Inert Gas (MIG) welding and Plasma Arc Cutting (PAC) and Welding (PAW) sources, as well as Inductively Coupled Plasma (ICP) torches. The main diagnostic tool that has been used is High Speed Imaging (HSI), often assisted by Schlieren imaging to analyse non-visible phenomena. Furthermore, starting from thermo-fluid-dynamic models developed by the University of Bologna group, such plasma processes have been studied also with new advanced models, focusing for instance on the interaction between a melting metal wire and a plasma, or considering non-equilibrium phenomena for diagnostics of plasma arcs. Additionally, the experimental diagnostic tools that have been developed for industrial thermal plasmas have been used also for the characterization of innovative low temperature atmospheric pressure non equilibrium plasmas, such as dielectric barrier discharges (DBD) and Plasma Jets. These sources are controlled by few kV voltage pulses with pulse rise time of few nanoseconds to avoid the formation of a plasma arc, with interesting applications in surface functionalization of thermosensitive materials. In order to investigate also bio-medical applications of thermal plasma, a self-developed quenching device has been connected to an ICP torch. Such device has allowed inactivation of several kinds of bacteria spread on petri dishes, by keeping the substrate temperature lower than 40 degrees, which is a strict requirement in order to allow the treatment of living tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is on loop-induced processes in theories with warped extra dimensions where the fermions and gauge bosons are allowed to propagate in the bulk, while the Higgs sector is localized on or near the infra-red brane. These so-called Randall-Sundrum (RS) models have the potential to simultaneously explain the hierarchy problem and address the question of what causes the large hierarchies in the fermion sector of the Standard Model (SM). The Kaluza-Klein (KK) excitations of the bulk fields can significantly affect the loop-level processes considered in this thesis and, hence, could indirectly indicate the existence of warped extra dimensions. The analytical part of this thesis deals with the detailed calculation of three loop-induced processes in the RS models in question: the Higgs production process via gluon fusion, the Higgs decay into two photons, and the flavor-changing neutral current b → sγ. A comprehensive, five-dimensional (5D) analysis will show that the amplitudes of the Higgs processes can be expressed in terms of integrals over 5D propagators with the Higgs-boson profile along the extra dimension, which can be used for arbitrary models with a compact extra dimension. To this end, both the boson and fermion propagators in a warped 5D background are derived. It will be shown that the seemingly contradictory results for the gluon fusion amplitude in the literature can be traced back to two distinguishable, not smoothly-connected incarnations of the RS model. The investigation of the b → sγ transition is performed in the KK decomposed theory. It will be argued that summing up the entire KK tower leads to a finite result, which can be well approximated by a closed, analytical expression.rnIn the phenomenological part of this thesis, the analytic results of all relevant Higgs couplings in the RS models in question are compared with current and in particular future sensitivities of the Large Hadron Collider (LHC) and the planned International Linear Collider. The latest LHC Higgs data is then used to exclude significant portions of the parameter space of each RS scenario. The analysis will demonstrate that especially the loop-induced Higgs couplings are sensitive to KK particles of the custodial RS model with masses in the multi tera-electronvolt range. Finally, the effect of the RS model on three flavor observables associated with the b → sγ transition are examined. In particular, we study the branching ratio of the inclusive decay B → X_s γ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymerbasierte Kolloide mit Groen im Nanometerbereich werden als aussichts- reiche Kandidaten fur die Verkapselung und den Transport von pharmazeutischen Wirkstoen angesehen. Daher ist es wichtig die physikalischen Prozesse, die die Bil- dung, Struktur und kinetische Stabilitat der polymerbasierten Kolloide beein ussen, besser zu verstehen. Allerdings ist die Untersuchung dieser Prozesse fur nanome- tergroe Objekte kompliziert und erfordert fortgeschrittene Techniken. In dieser Arbeit beschreibe ich Untersuchungen, bei denen Zwei-Farben-Fluoreszenzkreuz- korrelationsspektroskopie (DC FCCS) genutzt wurde, um Informationen uber die Wechselwirkung und den Austausch von dispergierten, nanometergroen Kolloiden zu bekommen. Zunachst habe ich den Prozess der Polymernanopartikelherstellung aus Emul- sionstropfen untersucht, welcher einen der am haugsten angewendeten Prozesse der Nanopartikelformulierung darstellt. Ich konnte zeigen, dass mit DC FCCS eindeutig und direkt Koaleszenz zwischen Emulsionstropfen gemessen werden kann. Dies ist von Interesse, da Koaleszenz als Hauptgrund fur die breite Groenverteilung der nalen Nanopartikel angesehen wird. Weiterhin habe ich den Austausch von Mizellen bildenden Molekulen zwischen amphiphilen Diblock Kopolymermizellen untersucht. Als Modellsystem diente ein Linear-Burste Block Kopolymer, welches Mizellen mit einer dichten und kurzen Korona bildet. Mit Hilfe von DC FCCS konnte der Austausch in verschiedenen Losungsmitteln und bei verschiedenen Temperaturen beobachtet werden. Ich habe herausgefunden, dass in Abhangigkeit der Qualitat des Losungsmittels die Zeit des Austausches um Groenordnungen verschoben werden kann, was eine weitreichende Einstellung der Austauschkinetik ermoglicht. Eine Eigenschaft die all diese Kolloide gemeinsam haben ist ihre Polydispersitat. Im letzten Teil meiner Arbeit habe ich am Beispiel von Polymeren als Modellsystem untersucht, welchen Eekt Polydispersitat und die Art der Fluoreszenzmarkierung auf FCS Experimente haben. Eine Anpassung des klassischen FCS Modells kann die FCS Korrelationskurven dieser Systeme beschreiben. Die Richtigkeit meines Ansatzes habe ich mit dem Vergleich zur Gel-Permeations-Chromatographie und Brownschen Molekulardynamiksimulationen bestatigt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past few decades the impacts of climate warming have been significant in alpine glaciated regions. Many valley glaciers formerly linked as distributary glaciers to high-level icecaps have decoupled at their icefalls, exposing major escarpments and generating a suite of dynamic landforrns dominated by mass wasting. Ice-dominated landforms, here termed icy debris fans, develop rapidly by ice avalanching, rockfall, and icy debris flow. Field-based reconnaissance studies at two alpine settings, the Wrangell Mountains of Alaska and the Southern Alps of New Zealand, provide a preliminary morphogenetic model of spatial and temporal evolution of icy debris fans in a range of alpine settings. The influence of these processes on landform evolution is largely unrecognized in the literature dealing with post-glacial landform adjustment known as the paraglacial. A better understanding of these dynamic processes will be increasingly important because of the extreme geohazards characterizing these areas. Our field studies show that after glacier decoupling, icy debris fans begin to form along the base of bedrock escarpments at the mouths of catchments and prograde over valley glaciers. The presence of a distinct catchment, apex, and fan morphology distinguishes these landforms from other landforms common in periglacial hillslope settings receiving abundant clastic debris and ice. Ice avalanching is the most abundant process involved in icy debris fan formation. Fans developed below weakly incised catchments are dominated by ice avalanching and are composed primarily of ice with minor lithic detritus. Typically, avalanches fall into the fan catchments where sediments transform into grainflows that flow onto the fans. Once on the fans, avalanche deposits ablate rapidly, flattening and concentrating lithic fragments at the surface. Icy debris fans may become thick enough to become glaciers with splay crevasse systems. Fans developed below larger, more complex catchments are composed of higher proportions of lithic detritus resulting from temporary storage of ice and lithic detritus deposits within the catchment. Episodic outbursts of meltwater from the icecap may mix with the stored sediments and mobilize icy debris flows (mixture of ice and lithic clasts) onto the fans. Our observations indicate that the entire evolutionary cycle of icy debris fans probably occurs during an early paraglacial interval (i.e., decades to 100 years). Observations comparing avalanche frequency, volume, and fan morphologic evolution at the Alaska site between 2006 and 2010 illustrate complex response between icy debris fans even within the same cirque - where one fan may be growing while others are downwasting because of differences in ice supply controlled by their respective catchments and icecap contributions. As ice supply from the icecap diminishes through time, icy debris fans rapidly downwaste and eventually evolve into talus cones that receive occasional but ephemeral ice avalanches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of dicyanobiphenyl-cyclophanes 1-6 with various pi-backbone conformations and characteristic n-type semiconductor properties is presented. Their synthesis, optical, structural, electrochemical, spectroelectrochemical, and packing properties are investigated. The X-ray crystal structures of all n-type rods allow the systematic correlation of structural features with physical properties. In addition, the results are supported by quantum mechanical calculations based on density functional theory. A two-step reduction process is observed for all n-type rods, in which the first step is reversible. The potential gap between the reduction processes depends linearly on the cos(2) value of the torsion angle phi between the pi-systems. Similarly, optical absorption spectroscopy shows that the vertical excitation energy of the conjugation band correlates with the cos(2) value of the torsion angle phi. These correlations demonstrate that the fixed intramolecular torsion angle phi is the dominant factor determining the extent of electron delocalization in these model compounds, and that the angle phi measured in the solid-state structure is a good proxy for the molecular conformation in solution. Spectroelectrochemical investigations demonstrate that conformational rigidity is maintained even in the radical anion form. In particular, the absorption bands corresponding to the SOMO-LUMO+i transitions are shifted bathochromically, whereas the absorption bands corresponding to the HOMO-SOMO transition are shifted hypsochromically with increasing torsion angle phi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target cells. Strikingly, CDV transmission to remote cells could occur in less than 6 h, suggesting that a complete viral cycle with production of extracellular free particles was not essential in enabling CDV to spread in glial cells. Titration experiments and electron microscopy confirmed a very low CDV particle production despite higher titers of membrane-associated viruses. Interestingly, confocal laser microscopy and lentivirus transduction indicated expression and functionality of the viral fusion machinery, consisting of the viral fusion (F) and attachment (H) glycoproteins, at the cell surface. Importantly, using a single-cycle infectious recombinant H-knockout, H-complemented virus, we demonstrated that H, and thus potentially the viral fusion complex, was necessary to enable CDV spread. Furthermore, since we could not detect CD150/SLAM expression in brain cells, the presence of a yet non-identified glial receptor for CDV was suggested. Altogether, our findings indicate that persistence in CDV infection results from intracellular cell-to-cell transmission requiring the CDV-H protein. Viral transfer, happening selectively at the tip of astrocytic processes, may help the virus to cover long distances in the astroglial network, "outrunning" the host's immune response in demyelinating plaques, thus continuously eliciting new lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The developmental processes and functions of an organism are controlled by the genes and the proteins that are derived from these genes. The identification of key genes and the reconstruction of gene networks can provide a model to help us understand the regulatory mechanisms for the initiation and progression of biological processes or functional abnormalities (e.g. diseases) in living organisms. In this dissertation, I have developed statistical methods to identify the genes and transcription factors (TFs) involved in biological processes, constructed their regulatory networks, and also evaluated some existing association methods to find robust methods for coexpression analyses. Two kinds of data sets were used for this work: genotype data and gene expression microarray data. On the basis of these data sets, this dissertation has two major parts, together forming six chapters. The first part deals with developing association methods for rare variants using genotype data (chapter 4 and 5). The second part deals with developing and/or evaluating statistical methods to identify genes and TFs involved in biological processes, and construction of their regulatory networks using gene expression data (chapter 2, 3, and 6). For the first part, I have developed two methods to find the groupwise association of rare variants with given diseases or traits. The first method is based on kernel machine learning and can be applied to both quantitative as well as qualitative traits. Simulation results showed that the proposed method has improved power over the existing weighted sum method (WS) in most settings. The second method uses multiple phenotypes to select a few top significant genes. It then finds the association of each gene with each phenotype while controlling the population stratification by adjusting the data for ancestry using principal components. This method was applied to GAW 17 data and was able to find several disease risk genes. For the second part, I have worked on three problems. First problem involved evaluation of eight gene association methods. A very comprehensive comparison of these methods with further analysis clearly demonstrates the distinct and common performance of these eight gene association methods. For the second problem, an algorithm named the bottom-up graphical Gaussian model was developed to identify the TFs that regulate pathway genes and reconstruct their hierarchical regulatory networks. This algorithm has produced very significant results and it is the first report to produce such hierarchical networks for these pathways. The third problem dealt with developing another algorithm called the top-down graphical Gaussian model that identifies the network governed by a specific TF. The network produced by the algorithm is proven to be of very high accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidemiologic studies have shown correlations between morbidity and particles < or = 2.5 microm generated from pollution processes and manufactured nanoparticles. Thereby nanoparticles seem to play a specific role. The interaction of particles with the lung, the main pathway of undesired particle uptake, is poorly understood. In most studies investigating these interactions in vitro, particle deposition differs greatly from the in vivo situation, causing controversial results. We present a nanoparticle deposition chamber to expose lung cells mimicking closely the particle deposition conditions in the lung. In this new deposition chamber, particles are deposited very efficiently, reproducibly, and uniformly onto the cell culture, a key aspect if cell responses are quantified in respect to the deposited particle number. In situ analyses of the lung cells, e.g., the ciliary beat frequency, indicative of the defense capability of the cells, are complemented by off-line biochemical, physiological, and morphological cell analyses.