911 resultados para Continuous-time Markov Chain
Resumo:
Reliability and dependability modeling can be employed during many stages of analysis of a computing system to gain insights into its critical behaviors. To provide useful results, realistic models of systems are often necessarily large and complex. Numerical analysis of these models presents a formidable challenge because the sizes of their state-space descriptions grow exponentially in proportion to the sizes of the models. On the other hand, simulation of the models requires analysis of many trajectories in order to compute statistically correct solutions. This dissertation presents a novel framework for performing both numerical analysis and simulation. The new numerical approach computes bounds on the solutions of transient measures in large continuous-time Markov chains (CTMCs). It extends existing path-based and uniformization-based methods by identifying sets of paths that are equivalent with respect to a reward measure and related to one another via a simple structural relationship. This relationship makes it possible for the approach to explore multiple paths at the same time,· thus significantly increasing the number of paths that can be explored in a given amount of time. Furthermore, the use of a structured representation for the state space and the direct computation of the desired reward measure (without ever storing the solution vector) allow it to analyze very large models using a very small amount of storage. Often, path-based techniques must compute many paths to obtain tight bounds. In addition to presenting the basic path-based approach, we also present algorithms for computing more paths and tighter bounds quickly. One resulting approach is based on the concept of path composition whereby precomputed subpaths are composed to compute the whole paths efficiently. Another approach is based on selecting important paths (among a set of many paths) for evaluation. Many path-based techniques suffer from having to evaluate many (unimportant) paths. Evaluating the important ones helps to compute tight bounds efficiently and quickly.
Resumo:
This study aimed to standardise an in-house real-time polymerase chain reaction (rtPCR) to allow quantification of hepatitis B virus (HBV) DNA in serum or plasma samples, and to compare this method with two commercial assays, the Cobas Amplicor HBV monitor and the Cobas AmpliPrep/Cobas TaqMan HBV test. Samples from 397 patients from the state of São Paulo were analysed by all three methods. Fifty-two samples were from patients who were human immunodeficiency virus and hepatitis C virus positive, but HBV negative. Genotypes were characterised, and the viral load was measure in each sample. The in-house rtPCR showed an excellent success rate compared with commercial tests; inter-assay and intra-assay coefficients correlated with commercial tests (r = 0.96 and r = 0.913, p < 0.001) and the in-house test showed no genotype-dependent differences in detection and quantification rates. The in-house assay tested in this study could be used for screening and quantifying HBV DNA in order to monitor patients during therapy.
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.
Resumo:
This paper addresses an output feedback control problem for a class of networked control systems (NCSs) with a stochastic communication protocol. Under the scenario that only one sensor is allowed to obtain the communication access at each transmission instant, a stochastic communication protocol is first defined, where the communication access is modelled by a discrete-time Markov chain with partly unknown transition probabilities. Secondly, by use of a network-based output feedback control strategy and a time-delay division method, the closed-loop system is modeled as a stochastic system with multi time-varying delays, where the inherent characteristic of the network delay is well considered to improve the control performance. Then, based on the above constructed stochastic model, two sufficient conditions are derived for ensuring the mean-square stability and stabilization of the system under consideration. Finally, two examples are given to show the effectiveness of the proposed method.
Resumo:
In this paper we discuss the relationship and characterization of stochastic comparability, duality, and Feller–Reuter–Riley transition functions which are closely linked with each other for continuous time Markov chains. A necessary and sufficient condition for two Feller minimal transition functions to be stochastically comparable is given in terms of their density q-matrices only. Moreover, a necessary and sufficient condition under which a transition function is a dual for some stochastically monotone q-function is given in terms of, again, its density q-matrix. Finally, for a class of q-matrices, the necessary and sufficient condition for a transition function to be a Feller–Reuter–Riley transition function is also given.
Resumo:
The key problems in discussing duality and monotonicity for continuous-time Markov chains are to find conditions for existence and uniqueness and then to construct corresponding processes in terms of infinitesimal characteristics, i.e., q-matrices. Such problems are solved in this paper under the assumption that the given q-matrix is conservative. Some general properties of stochastically monotone Q-process ( Q is not necessarily conservative) are also discussed.
Resumo:
In this paper, we investigate the remanufacturing problem of pricing single-class used products (cores) in the face of random price-dependent returns and random demand. Specifically, we propose a dynamic pricing policy for the cores and then model the problem as a continuous-time Markov decision process. Our models are designed to address three objectives: finite horizon total cost minimization, infinite horizon discounted cost, and average cost minimization. Besides proving optimal policy uniqueness and establishing monotonicity results for the infinite horizon problem, we also characterize the structures of the optimal policies, which can greatly simplify the computational procedure. Finally, we use computational examples to assess the impacts of specific parameters on optimal price and reveal the benefits of a dynamic pricing policy. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In remanufacturing, the supply of used products and the demand for remanufactured products are usually mismatched because of the great uncertainties on both sides. In this paper, we propose a dynamic pricing policy to balance this uncertain supply and demand. Specifically, we study a remanufacturer’s problem of pricing a single class of cores with random price-dependent returns and random demand for the remanufactured products with backlogs. We model this pricing task as a continuous-time Markov decision process, which addresses both the finite and infinite horizon problems, and provide managerial insights by analyzing the structural properties of the optimal policy. We then use several computational examples to illustrate the impacts of particular system parameters on pricing policy.
Resumo:
We propose and analyse a class of evolving network models suitable for describing a dynamic topological structure. Applications include telecommunication, on-line social behaviour and information processing in neuroscience. We model the evolving network as a discrete time Markov chain, and study a very general framework where, conditioned on the current state, edges appear or disappear independently at the next timestep. We show how to exploit symmetries in the microscopic, localized rules in order to obtain conjugate classes of random graphs that simplify analysis and calibration of a model. Further, we develop a mean field theory for describing network evolution. For a simple but realistic scenario incorporating the triadic closure effect that has been empirically observed by social scientists (friends of friends tend to become friends), the mean field theory predicts bistable dynamics, and computational results confirm this prediction. We also discuss the calibration issue for a set of real cell phone data, and find support for a stratified model, where individuals are assigned to one of two distinct groups having different within-group and across-group dynamics.
Resumo:
Consider a continuous-time Markov process with transition rates matrix Q in the state space Lambda boolean OR {0}. In In the associated Fleming-Viot process N particles evolve independently in A with transition rates matrix Q until one of them attempts to jump to state 0. At this moment the particle jumps to one of the positions of the other particles, chosen uniformly at random. When Lambda is finite, we show that the empirical distribution of the particles at a fixed time converges as N -> infinity to the distribution of a single particle at the same time conditioned on not touching {0}. Furthermore, the empirical profile of the unique invariant measure for the Fleming-Viot process with N particles converges as N -> infinity to the unique quasistationary distribution of the one-particle motion. A key element of the approach is to show that the two-particle correlations are of order 1/N.
Resumo:
Non-Equilibrium Statistical Mechanics is a broad subject. Grossly speaking, it deals with systems which have not yet relaxed to an equilibrium state, or else with systems which are in a steady non-equilibrium state, or with more general situations. They are characterized by external forcing and internal fluxes, resulting in a net production of entropy which quantifies dissipation and the extent by which, by the Second Law of Thermodynamics, time-reversal invariance is broken. In this thesis we discuss some of the mathematical structures involved with generic discrete-state-space non-equilibrium systems, that we depict with networks in all analogous to electrical networks. We define suitable observables and derive their linear regime relationships, we discuss a duality between external and internal observables that reverses the role of the system and of the environment, we show that network observables serve as constraints for a derivation of the minimum entropy production principle. We dwell on deep combinatorial aspects regarding linear response determinants, which are related to spanning tree polynomials in graph theory, and we give a geometrical interpretation of observables in terms of Wilson loops of a connection and gauge degrees of freedom. We specialize the formalism to continuous-time Markov chains, we give a physical interpretation for observables in terms of locally detailed balanced rates, we prove many variants of the fluctuation theorem, and show that a well-known expression for the entropy production due to Schnakenberg descends from considerations of gauge invariance, where the gauge symmetry is related to the freedom in the choice of a prior probability distribution. As an additional topic of geometrical flavor related to continuous-time Markov chains, we discuss the Fisher-Rao geometry of nonequilibrium decay modes, showing that the Fisher matrix contains information about many aspects of non-equilibrium behavior, including non-equilibrium phase transitions and superposition of modes. We establish a sort of statistical equivalence principle and discuss the behavior of the Fisher matrix under time-reversal. To conclude, we propose that geometry and combinatorics might greatly increase our understanding of nonequilibrium phenomena.
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.
Resumo:
Link adaptation is a critical component of IEEE 802.11 systems, which adapts transmission rates to dynamic wireless channel conditions. In this paper we investigate a general cross-layer link adaptation algorithm which jointly considers the physical layer link quality and random channel access at the MAC layer. An analytic model is proposed for the link adaptation algorithm. The underlying wireless channel is modeled with a multiple state discrete time Markov chain. Compared with the pure link quality based link adaptation algorithm, the proposed cross-layer algorithm can achieve considerable performance gains of up to 20%.
Resumo:
This work attempts to shed light to the fundamental concepts behind the stability of Multi-Agent Systems. We view the system as a discrete time Markov chain with a potentially unknown transitional probability distribution. The system will be considered to be stable when its state has converged to an equilibrium distribution. Faced with the non-trivial task of establishing the convergence to such a distribution, we propose a hypothesis testing approach according to which we test whether the convergence of a particular system metric has occurred. We describe some artificial multi-agent ecosystems that were developed and we present results based on these systems which confirm that this approach qualitatively agrees with our intuition.
Resumo:
Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.