970 resultados para Continental shelf
Resumo:
Clay mineral and bulk chemical (Si, Al, K, Mg, Sr, La, Ce, Nd) analyses of terrigenous surface sediments on the Siberian-Arctic shelf indicate that there are five regions with distinct, or endmember, sedimentary compositions. The formation of these geochemical endmembers is controlled by sediment provenance and grain size sorting. (1) The shale endmember (Al, K and REE rich sediment) is eroded from fine-grained marine sedimentary rocks of the Verkhoyansk Mountains and Kolyma-Omolon superterrain, and discharged to the shelf by the Lena, Yana, Indigirka and Kolyma Rivers. (2) The basalt endmember (Mg rich) originates from NE Siberia's Okhotsk-Chukotsk volcanic belt and Bering Strait inflow, and is prevalent in Chukchi Sea Sediments. Concentrations of the volcanically derived clay mineral smectite are elevated in Chukchi fine-fraction sediments, corroborating the conclusion that Chukchi sediments are volcanic in origin. (3) The mature sandstone endmember (Si rich) is found proximal to Wrangel Island and sections of the Chukchi Sea's Siberian coast and is derived from the sedimentary Chukotka terrain that comprises these landmasses. (4) The immature sandstone endmember (Sr rich) is abundant in the New Siberian Island region and reflects inputs from sedimentary rocks that comprise the islands. (5) The immature sandstone endmember is also prevalent in the western Laptev Sea, where it is eroded from sedimentary deposits blanketing the Siberian platform that are compositionally similar to those on the New Siberian Islands. Western Laptev can be distinguished from New Siberian Island region sediments by their comparatively elevated smectite concentrations and the presence of the basalt endmember, which indicate Siberian platform flood basalts are also a source of western Laptev sediments. In certain locations grain size sorting noticeably affects shelf sediment chemistry. (1) Erosion of fines by currents and sediment ice rafting contributes to the formation of the coarse-grained sandstone endmembers. (2) Bathymetrically controlled grain size sorting, in which fines preferentially accumulate offshore in deeper, less energetic water, helps distribute the fine-grained shale and basalt endmembers. An important implication of these results is that the observed sedimentary geochemical endmembers provide new markers of sediment provenance, which can be used to track sediment transport, ice-rafted debris dispersal or the movement of particle-reactive contaminants.
Resumo:
The CaCO3-contents and the fractions > 40 µm have been analysed from 5 kastenloten, one piston core and two kastengreifer taken between Senegal and Cape Verde Islands. Numerous benthonic and planktonic organisms and different terrigenous components have been distinguished. The four cores off Senegal reach middle Wuerm sediments; cores GIK12329-6 and TAG72-1 reach the V-zone and core GIK12331-4 the X-zone (Eem); the two kastengreifer contain sediments of Holocene age. Correlation of the cores has been made. Holocene sedimentation rates decrease from the shallow cores (6-11 cm/1000 years) to the deep-sea (1-2 cm/1000 years). The following climatic variations could be deduced from the sediments off the Senegal: during Holocene climate was in general as today, the Senegal river transporting fine grained material to the sea. The upper Wuerm was arid with no river influence but with red dune sand transported to the continental slope. During middle Wuerm the climate was humid again. The deep-sea cores have been influenced by eolian material from arid regions during glacial and interglacial periods, indicated by relatively high "Wuestenquarz-numbers". However, during Wuerm "Wuestenquarz-numbers" are higher than during Holocene and Eem, indicating that more intensely red coloured sediment was exposed to wind activity on the continent during this period. Varying amounts of terrigenous material and CaCO3-contents indicate varying wind strengths (lower in Holocene and Eem than during Wuerm). The boundary between humid and arid Wuerm climate was at approximately 20 °N. Influence of upwelling is difficult to establish in the sediments off Senegal, because river influence, while increasing fertility also dilutes the diatoms which are typical for upwelling. High amounts of organic carbon, low plankton/benthos ratios of foraminifers and low plankton foraminifer/radiolarian ratios in Holocene sections might be interpreted as influenced by upwelling. Turbidites occur in cores 72 and 31 and at the Holocene/Pleistocene boundary of core GIK12329-6. Their composition indicates provenance from the continental shelf of the Cape Verde Islands for core 31 and the continental shelf and slope off Senegal for core TAG72-1. Volcanic material, rare in the normal pelagic sediment of core GIK12331-4 is more frequent in the turbidites.
Resumo:
Benthic oxygen fluxes calculated from in situ microelectrode profiles arc compared with benthic flux chamber O2 uptake measurements on a transect of eight stations across the continental shelf and three stations on the slope of Washington State. Station depths ranged from 40 to 630 m and bottom-water oxygen concentrations were 127-38 µM. The fluxes measured by the two methods were similar on the slope, but on the shelf, the chamber flux exceeded the microelectrode flux by as much as a factor of 3-4. We attribute this difference to pore-water irrigation, a process which apparently accounts for the oxidation of a significant amount of organic C in the continental shelf sediments. Combining our diffusive flux data with other data demonstrates clearly that the bottomwater oxygen concentration must play some significant role in determining the sedimentary oxygen consumption rate. Numerical simulation of the microelectrode 0, profiles suggests that roughly half the diffusive 0, flux must be consumed within - 1 mm of the sediment surface. If this conclusion is correct, then the magnitude of the diffusive flux depends both on the bottom-water oxygen concentration and on the supply rate of labile C to the sediment surf'ace.
Resumo:
This paper presents a geotechnical characterization of the glacigenic sediments in Prydz Bay, East Antarctica, based on the shipboard physical properties data obtained during Leg 119, combined with results of land-based analyses of 24 whole-round core samples. Main emphasis is placed on the land-based studies, which included oedometer consolidation tests, triaxial and simple shear tests for undrained shear strength, permeability tests in oedometer and triaxial cell, Atterberg limits, and grain-size analyses. The bulk of the tested sediments comprise overconsolidated diamictites of a relatively uniform lithology. The overconsolidation results from a combination of glacial loading and sediment overburden subsequently removed by extensive glacial erosion of the shelf. This leads to downhole profiles of physical properties that have been observed not to change as a function of the thickness of present overburden. A number of fluctuations in the parameters shows a relatively systematic trend and most likely results from changes in the proximity to the ice sheet grounding line in response to variations in the glacial regime. Very low permeabilities mainly result from high preconsolidation stresses (Pc'). Pc' values up to 10,000 kPa were estimated from the oedometer tests, and empirical estimates based on undrained shear strengths (up to 2500 kPa) indicate that the oedometer results are conservative. The diamictites generally classify as inactive, of low to medium plasticity, and they consolidate with little deformation, even when subjected to great stresses. This is the first report of geotechnical data from deep boreholes on the Antarctic continental shelf, but material of similar character can also be expected in other areas around the Antarctic.
Resumo:
This dataset contains raster grids in GeoTIFF format describing the habitat suitability for living Lophelia pertusa reefs in the Irish continental margin (extended continental shelf claim). The habitat suitability map is given in continuous and binary (based on the 10th percentile threshold) format. The geographic extent is 25°53.801'W - 6°42.401'W and 46°45.033'N - 57°27.033'N. The spatial resolution is 0.01°x0.01°. The map projection is WGS 1984.
Resumo:
Carbon cycling is an important but poorly understood process on passive continental margins. In this study, we use the ionic and stable isotopic composition of interstitial waters and the petrology, mineralogy, and stable isotopic composition of authigenic carbonates collected from Ocean Drilling Program (ODP) Leg 174A (Sites 1071 and 1072) to constrain the origin of the carbonates and the evolution of methane on the outer New Jersey shelf. The pore fluids of the New Jersey continental shelf are characterized by (1) a fresh-brackish water plume, and (2) organic matter degradation reactions, which proceed through sulfate reduction. However, only minor methanogenesis occurs. The oxygen isotopic composition of the pore fluids supports a meteoric origin of the low salinity fluids. Authigenic carbonates are found in nodules, thin (~1-cm) layers, and carbonate cemented pavements. Siderite is the most common authigenic carbonate, followed by dolomite and calcite. The oxygen isotopic composition of the authigenic carbonates, i.e. 1.3-6.5 per mil PeeDee Belemnite (PDB), indicates an origin in marine pore fluids. The carbon isotopic composition of dolomite cements range from -16.4 to -8.8 per mil PDB, consistent with formation within the zone of sulfate reduction. Siderite d13C values show a greater range (-17.67-16.4 per mil), but are largely positive (mean=2.8 per mil) and are interpreted to have formed throughout the zone of methanogenesis. In contrast, calcite d13C values are highly negative (as low as -41.7 per mil)and must have formed from waters with a large component of dissolved inorganic carbon derived from methane oxidation. Pore water data show that despite complete sulfate reduction, methanogenesis appears not to be an important process presently occurring in the upper 400 m of the outer New Jersey shelf. In contrast, the carbon isotopic composition of the siderites and calcites document an active methanogenic zone during their formation. The methane may have been either oxidized or vented from shelf sediments, perhaps during sea-level fluctuations. If this unaccounted and variable methane flux is an areally important process during Neogene sea-level fluctuations, then it likely plays an important role in long-term carbon cycling on passive continental margins
Resumo:
The impact of late glacial changes on the sedimentary record was investigated in two long vibracores, collected from the shelf edge off Mauritania, northwest Africa. Lithology and radiocarbon dates indicate that the sedimentary sequences were mainly controlled by sea-level changes on the shelf. The upper Pleistocene sequence is characterized by deposition in coastal environments, while the Holocene sequence represents deposition in shelf environments. During low sea level, much sediment was supplied to the present outer shelf, and the data imply an average accumulation rate of up to 43.0 cm/1000 yrs during the late Pleistocene, which is substantially higher than the Holocene rate. Shelf sediments were continuously reworked and redistributed on a regional scale during falling and rising sea level. The presence of reworked material results in radiocarbon ages which are too old. The mollusc. Venus striatula, which presently is found north of, but not along, the Mauritanian coast, occurs in the upper Pleistocene sequence, suggesting cooler water conditions in the shelf during late glacial times. This species probably migrated to the south during late glacial times, following the southward extension of the cold Canary Current. Radiocarbon dates of the shells broadly coincide with a lowstand of sea level over this part of the continental shelf.
Resumo:
The present dataset is part of an interdisciplinary project carried out on board the RV Southern Surveyor off New South Wales (Australia) from the 15th to the 31st October 2010. The main objective of the research voyage was to evaluate how the East Australian Current (EAC) affects the optical, chemical, physical, and biological water properties of the continental shelf and slope off the NSW coast.
Resumo:
Chemical analyses have been carried out on 40 samples from the sediment surface and 210 samples from cores that were taken from the edge of the African continental block at the Arabian Sea (coasts of Somalia and Kenya, from Cape Guardafui to Mombasa) on the occasion of the Indian Ocean Expedition of the German research vessel "Meteor" during the years 1964/65. The carbonate content shows its maximum on the northern part of the continental shelf of Africa, where fossil reef debris furnish the detritic portion of carbonate. In the southern part of the continental shelf of Africa the portion of carbonate is low, as it is heavily diluted by the non-carbonatic detritus. It is also in the deep-sea that a lower carbonate content is encountered below the calcite compensation depth. Trace elements in the carbonates: On the shelf and in its vicinity Sr and Mg are enriched. The enrichment has been brought about by the portion of reef debris, as this latter contains aragonite (enrichment of Sr) as well as high-magnesium calcite. The greatest part of the slope contains carbonates that are poor in trace elements and mainly made up of foraminifera (and of coccoliths). Below the carbonate compensation depth another enrichment of Mg takes place in the carbonates, which is probably due to a selective dissolution of calcite in comparison to dolomite. The iron and manganese contents of the carbonates are high (iron higher in coast proximity, manganese higher in the depth), but not genuine, as they come about in the course of the extraction of the carbonates as a result of the dissolution of authigenic Mn-Fe-minerals. Non-carbonatic portion of the sediments: In coast proximity an enrichment of quartz comes about. Within the quartz-rich zone it is the elements V, Cr, Fe, Ti, and B that have been enriched in the non-carbonatic components. This enrichment must be attributed to an elevated content of heavy minerals. In the case of Ti and Fe the preliminary enrichment brought about by processes of lateritisation on the continent plays a certain role. Toward the deep-sea an enrichment of the elements Mn Ni, Cu, and Zn takes place; these enrichments must be explained by authigenic Mn-Fe-minerals. Within the Mn-rich zone a belt running parallel to the coast stands out that shows an increased Mn-enrichment. However, this increase in enrichment does not apply to the elements Ni, Cu, and Zn. It is probable that this latter increased enrichment comes about as a result of the migration of manganese to the sediment surface. (Within the sediments there prevail reductive conditions, in the presence of which Mn is capable of migration, whereas at the sediment surface its precipitation comes about under oxidizing conditions). The quantity of organic matter mainly is dependent on grain size and on the rate of sedimentation. On the shelf an impoverishment of organic matter is to be encountered, as the sediments are coarse-grained. In the depth the impoverishment must be explained on the strength of a small rate of sedimentation. Between those two ranges organic substance is enriched. P and N show an enrichment in comparison to Corg with this applying all the more the smaller the absolute quantity of Corg is. In this particular case one has to do with an enrichment coming about during the diagenetic processes of organic matter. A comparison with the sediments from the Indian and Pakistani continental border in Arabian Sea shows as follows: on the African continental border the coarse detrital material has been transported farther out to deep-sea, which has something to do with the greater inclination of the surface of sedimentation. Carbonate is found in greater abundance on the African side. Its chemical composition is influenced by reef-debris which is missing by Indian-Pakistani side. The content of organic matter is lower on the African side. Contrary to that, the enrichments of N and P compared to organic matter are of an equal order of magnitude on both sides of the Arabian Sea.
Resumo:
Knowing the extent of the West Antarctic Ice Sheet (WAIS) at the Last Glacial Maximum (LGM) is crucial for initiating and calibrating numerical ice sheet models that can predict future ice-sheet change and contributions to sea level. However, empirical data are lacking for key areas of outer continental shelves, where the LGM-WAIS must have terminated. We present detailed marine geophysical and geological data documenting an up to ~12 m-thick sequence of glaciomarine sediments within a relict glacial trough in the outer parts of the Amundsen Sea Embayment. Continuous deposition must have persisted here since at least >40 ka BP, pre-dating the established LGM by >13,000 years. Observations constrain the LGM grounding line to a distinct grounding-zone wedge ~100 km inland from the continental shelf edge. Thus, a substantial shelf area (~6000 km**2) remained ice free through the last glacial cycle.