996 resultados para Containing Peptide
Resumo:
Purpose. The purpose of this study was to investigate the immunogenicity of liposomes containing mannosylated lipid core peptide (manLCP) constructs, both in vitro and in vivo, with or without the addition of the immune stimulating adjuvant Quil A. Methods. Mouse bone marrow dendritic cells (BMDC) were cultured with liposome formulations for 48 h, and the resulting level of BMDC activation was determined by flow cytometry. BMDC pulsed with liposome formulations were incubated with 5,6-carboxyfluoroscein diacetate succinimidyl ester-labeled T cells for 72 h and the resulting T cell proliferation was determined by flow cytometry. To investigate the immunogenicity of formulations in vivo, groups of C57Bl/6J mice were immunized by subcutaneous injection, and the resulting antigen-specific cytotoxic and protective immune responses toward tumor challenge evaluated. Results. Despite being unable to demonstrate the activation of BMDC, BMDC pulsed with liposomes containing manLCP constructs were able to stimulate the proliferation of naive T cells in vitro. However, in vivo only liposomes containing both manLCP and Quil A were able to stimulate a strong antigen-specific cytotoxic immune response. Liposomes containing manLCP and Quil A within the same particle were able to protect against the growth of tumor cells to a similar level as if the antigen was administered in alum with CD4 help. Conclusion. ManLCPs administered in liposomes are able to stimulate strong cytotoxic and protective immune responses if Quil A is also incorporated as an adjuvant.
Resumo:
Tetrapeptide analogue H-[Glu-Ser-Lys(Thz)]-OH, containing a turn-inducing thiazole constraint, was used as a template to produce a 21-membered structurally characterized loop by linking Glu and Lys side chains with a Val-Ile dipeptide. This template was oligomerized in one pot to a library (cyclo-[1](n), n = 2-10) of giant symmetrical macrocycles (up to 120-membered rings), fused to 2-10 appended loops that were carried intact through multiple oligomerization (chain extension) and cyclization (chain terminating) reactions of the template. A three-dimensional solution structure for cyclo-[1](3) shows all three appended loops projecting from the same face of the macrocycle. This is a promising approach to separating pepticle motifs over large distances.
Resumo:
Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein- coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/ insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.
Resumo:
The cyclotides are a recently discovered family of miniproteins that contain a head-to-tail cyclized backbone and a knotted arrangement of disulfide bonds. They are approximately 30 amino acids in size and are present in high abundance in plants from the Violaceae, Rubiaceae, and Cucurbitaceae families, with individual plants containing a suite of up to 100 cyclotides. They have a diverse range of biological activities, including uterotonic, anti-HIV, antitumor, and antimicrobial activities, although their natural function is likely that of defending their host plants from pathogens and pests. This review focuses on the structural aspects of cyclotides, which may be thought of as a natural combinatorial peptide template in which a wide range of amino acids is displayed on a compact molecular core made up of the cyclic cystine knot structural motif. Cyclotides are exceptionally stable and are resistant to denaturation via thermal, chemical, or enzymatic treatments. The struclural features that contribute to their remarkable stability are described ill this review. (c) 2006 Wiley Periodicals, Inc.
Resumo:
1 The L6 myocyte cell line expresses high affinity receptors for calcitonin gene-related peptide (CGRP) which are coupled to activation of adenylyl cyclase. The biochemical pharmacology of these receptors has been examined by radioligand binding or adenosine 3':5'-cyclic monophosphate (cyclic AMP) accumulation. 2 In intact cells at 37 degrees C, human and rat alpha- and beta-CGRP all activated adenylyl cyclase with EC50s of about 1.5 nM. A number of CGRP analogues containing up to five amino acid substitutions showed similar potencies. In membrane binding studies at 22 degrees C in 1 mM Mg2+, the above all bound to a single site with IC50s of 0.1-0.4 nM. 3 The fragment CGRP(8-37) acted as a competitive antagonist of CGRP stimulation of adenylyl cyclase with a calculated Kd of 5 nM. The Kd determined in membrane binding assays was lower (0.5 nM). 4 The N-terminal extended human alpha-CGRP analogue Tyro-CGRP activated adenylyl cyclase and inhibited [125I]-iodohistidyl-CGRP binding less potently than human alpha-CGRP (EC50 for cyclase = 12 nM, IC50 for binding = 4 nM). 5 The pharmacological profile of the L6 CGRP receptor suggests that it most closely resembles sites on skeletal muscle, cardiac myocytes and hepatocytes. The L6 cell line should be a stable homogeneous model system in which to study CGRP mechanisms and pharmacology."
Resumo:
Co-polymerisation of α-styryl-poly(ethylene glycol)300, α,ω-bis(styryl)-penta(ethylene glycol) and 2,5-diphenyl-4-(4′-vinylbenzyl)oxazole in varying molar ratios resulted in the production of chemically functionalised scintillant-containing poly(oxyethylene glycol) polymer (POP-Sc) supports. These materials are compatible with both aqueous and organic solvents, and possess the ability to scintillate efficiently in the presence of ionising radiation, even after prolonged and repeated exposure to organic solvents. The utility of POP-Sc supports in both solid-phase peptide chemistry and a functional scintillation proximity assay has been exemplified.
Combinatorial approach to multi-substituted 1,4-Benzodiazepines as novel non-peptide CCK-antagonists
Resumo:
For the drug discovery process, a library of 168 multisubstituted 1,4-benzodiazepines were prepared by a 5-step solid phase combinatorial approach. Substituents were varied in the 3,5, 7 and 8-position on the benzodiazepine scaffold. The combinatorial library was evaluated in a CCK radiolabelled binding assay and CCKA (alimentary) and CCKB (brain) selective lead structures were discovered. The template of CCKA selective 1,4-benzodiazepin-2-ones bearing the tryptophan moiety was chemically modified by selective alkylation and acylation reactions. These studies provided a series of Asperlicin naturally analogues. The fully optimised Asperlicin related compound possessed a similar CCKA activity as the natural occuring compound. 3-Alkylated 1,4-benzodiazepines with selectivity towards the CCKB receptor subtype were optimised on A) the lipophilic side chain and B) the 2-aminophenyl-ketone moiety, together with some stereochemical changes. A C3 unit in the 3-position of 1,4-benzodiazepines possessed a CCKB activity within the nanomolar range. Further SAR optimisation on the N1-position by selective alkylation resulted in an improved CCKB binding with potentially decreased activity on the GABAA/benzodiazepine receptor complex. The in vivo studies revealed two N1-alkylated compounds containing unsaturated alkyl groups with anxiolytic properties. Alternative chemical approaches have been developed, including a route that is suitable for scale up of the desired target molecule in order to provide sufficient quantities for further in vivo evaluation.
Amino acid, peptide and drug transport across monolayers of human intestinal (CAC0-2) cells in vitro
Resumo:
The properties of Caco-2 monolayers were compared on aluminium oxide and nitrocellulose permeable-supports. On nitrocellulose, Caco-2 cells displayed a higher rate of taurocholic acid transport than those cultured on aluminium oxide inserts. In addition, Caco-2 cells grown on these two inserts were not comparable with respect to cell morphology, cell numbers and transepithelial electrical resistance. The low adsorption potential of the aluminium oxide inserts, particularly for high molecular weight or lipophilic ligands, offers a distinct advantage over nitrocellulose inserts for drug transport studies. The carrier-mediated uptake and transport of the imino acid (L-proline) and the acidic amino acids (L-aspartate and L-glutamate) have been studied. At pH7.4, L-proline uptake is mediated via an A-system carrier. Elevated uptake and transport under acidic conditions occurs by activation of a distinct carrier population. Acidic amino acid transport is mediated via a X-AG system. The flux of baclofen, CGP40116 andCGP40117 across Caco-2 monolayers was described by passive transport. The transport of three peptides, thyrotrophin-releasing hormone, SQ29852 and cyclosporin were investigated. Thyrotrophin-releasing hormone transport acrossCaco-2 monolayers was characterised by a minor saturable (carrier-mediated,approximately 25%) pathway, superimposed onto a major non-saturable (diffusional)pathway. SQ29852 uptake into Caco-2 monolayers is described by a major saturable mechanism (Km = 0.91 mM) superimposed onto a minor passive component.However, the initial-rate of SQ29852 transport is consistent with a passive transepithelial transport mechanism. These data highlight the possibility that itsbasolateral efflux is severely retarded such that the passive paracellular transportdictates the overall transepithelial transport characteristics. In addition, modelsuitable for investigating the transepithelial transport of cyclosporin A has been developed. A modification of the conventional Caco-2 model has been developed which has a calcium-free Ap donor-solution and a Bl receiver-solution containing the minimumcalcium concentration required to maintain monolayer integrity (100 μM). The influence of calcium and magnesium on the absorption of [14C]pamidronate was evaluated by comparing its transport across the conventional and minimum calciumCaco-2 models. Ap calcium and magnesium ions retard the Ap-to-Bl flux of pamidronate across Caco-2 monolayers. The effect of self-emulsifying oleic acid-Tween 80 formulations on Caco-2monolayer integrity has been investigated. Oleic acid-Tween 80 (1 0:1) formulations produced a dose-dependent disruption of Caco-2 monolayer integrity. This disruption was related to the oleic acid content of the formulation.
Resumo:
Anterior gradient-2 protein was identified using proteomic technologies as a p53 inhibitor which is overexpressed in human cancers, and this protein presents a novel pro-oncogenic target with which to develop diagnostic assays for biomarker detection in clinical tissue. Combinatorial phage-peptide libraries were used to select 12 amino acid polypeptide aptamers toward anterior gradient-2 to determine whether methods can be developed to affinity purify the protein from clinical biopsies. Selecting phage aptamers through four rounds of screening on recombinant human anterior gradient-2 protein identified two classes of peptide ligand that bind to distinct epitopes on anterior gradient-2 protein in an immunoblot. Synthetic biotinylated peptide aptamers bound in an ELISA format to anterior gradient-2, and substitution mutagenesis further minimized one polypeptide aptamer to a hexapeptide core. Aptamers containing this latter consensus sequence could be used to affinity purify to homogeneity human anterior gradient-2 protein from a single clinical biopsy. The spotting of a panel of peptide aptamers onto a protein microarray matrix could be used to quantify anterior gradient-2 protein from crude clinical biopsy lysates, providing a format for quantitative screening. These data highlight the utility of peptide combinatorial libraries to acquire rapidly a high-affinity ligand that can selectively bind a target protein from a clinical biopsy and provide a technological approach for clinical biomarker assay development in an aptamer microarray format.
Resumo:
Nitration of tyrosine in proteins and peptides is a post-translational modification that occurs under conditions of oxidative stress. It is implicated in a variety of medical conditions, including neurodegenerative and cardiovascular diseases. However, monitoring tyrosine nitration and understanding its role in modifying biological function remains a major challenge. In this work, we investigate the use of electron-vibration-vibration (EVV) two-dimensional infrared (2DIR) spectroscopy for the study of tyrosine nitration in model peptides. We demonstrate the ability of EVV 2DIR spectroscopy to differentiate between the neutral and deprotonated states of 3-nitrotyrosine, and we characterize their spectral signatures using information obtained from quantum chemistry calculations and simulated EVV 2DIR spectra. To test the sensitivity of the technique, we use mixed-peptide samples containing various levels of tyrosine nitration, and we use mass spectrometry to independently verify the level of nitration. We conclude that EVV 2DIR spectroscopy is able to provide detailed spectroscopic information on peptide side-chain modifications and to detect nitration levels down to 1%. We further propose that lower nitration levels could be detected by introducing a resonant Raman probe step to increase the detection sensitivity of EVV 2DIR spectroscopy. (Graph Presented).
Resumo:
Bicellar lipid mixture dispersions progressively coalesce to larger structures on warming. This phase behaviour is particularly sensitive to interactions that perturb bilayer properties. In this study, ²H NMR was used to study the perturbation of bicellar lipid mixtures by two peptides (SP-B₆₃₋₇₈, a lung surfactant protein fragment and Magainin 2, an antimicrobial peptide) which are structurally similar. Particular attention was paid to the relation between peptide-induced perturbation and lipid composition. In bicellar dispersions containing only zwitterionic lipids (DMPC-d₅₄/DMPC/DHPC (3:1:1)) both peptides had little to no effect on the temperature at which coalescence to larger structures occurred. Conversely, in mixtures containing anionic lipids (DMPC-d₅₄/DMPG/DHPC (3:1:1)), both peptides modified bicellar phase behaviour. In mixtures containing SP-B₆₃₋₇₈, the presence of peptide decreased the temperature of the ribbon-like to extended lamellar phase transition. The addition of Magainin 2 to DMPCd₅₄/ DMPG/DHPC (3:1:1) mixtures, in contrast, increased the temperature of this transition and yielded a series of spectra resembling DMPC/DHPC (4:1) mixtures. Additional studies of lipid dispersions containing deuterated anionic lipids were done to determine whether the observed perturbation involved a peptide-induced separation of zwitterionic and anionic lipids. Comparison of DMPC/DMPG-d₅₄/DHPC (3:1:1) and DMPC-d₅₄/DMPG/DHPC (3:1:1) mixtures showed that DMPC and DMPG occupy similar environments in the presence of SP-B₆₃₋₇₈, but different lipid environments in the presence of Magainin 2. This might reflect the promotion of anionic lipid clustering by Magainin 2. These results demonstrate the variability of mechanisms of peptide-induced perturbation and suggest that lipid composition is an important factor in the peptide-induced perturbation of lipid structures.
Resumo:
Arginine was hypothesized to be a model compound in the present study on molecular forms of indispensable amino acid (IAA) dietary supplementation. Juvenile South American pacu (Piaractus mesopotamicus) were fed diets containing arginine in a protein base (casein-wheat gluten or casein-gelatin), or the casein-wheat gluten base supplemented with dipeptide or free arginine at two levels (5 and 10 g kg(-1)). Growth and protein efficiency ratios were significantly affected by diets, but not by arginine molecular form. Three free dispensable amino acids (DAA) and four IAA in plasma were affected by diet, but plasma arginine concentrations did not differ. Plasma urea concentrations, being very low in the pacu, and hepatic arginase activities, were not affected by diet (P = 0.10-0.11), but together with plasma ornithine, mirrored the growth data. Molecular form of arginine supplementation, free or dipeptide, significantly changed several free IAA (Phe, Leu, Ile, His) and urea, with a higher mean plasma concentration in dipeptide fed fish. The dietary treatments, or molecular form of the arginine supplementation, did not change proximate composition, except that calcium levels decreased with higher dietary arginine supplementation level. The present study indicates that dipeptides can provide IAA to pacu, and that arginine supplemented in this form is utilized as efficiently as in free form.
Resumo:
The introduction of spraying procedures to fabricate layer-by-layer (LbL) films has brought new possibilities for the control of molecular architectures and for making the LbL technique compliant with industrial processes. In this study we show that significantly distinct architectures are produced for dipping and spray-LbL films of the same components, which included DODAB/DPPG vesicles. The films differed notably in their thickness and stratified nature. The electrical response of the two types of films to aqueous solutions containing erythrosin was also different. With multidimensional projections we showed that the impedance for the DODAB/DPPG spray-LbL film is more sensitive to changes in concentration, being therefore more promising as sensing units. Furthermore, with surface-enhanced Raman scattering (SERS) we could ascribe the high sensitivity of the LbL films to adsorption of erythrosin.
Resumo:
Twelve novel 8-hydroxyquinoline derivatives were synthesized with good yields by performing copper-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction) between an 8-O-alkylated-quinoline containing a terminal alkyne and various aromatic or protected sugar azides. These compounds were evaluated in vitro for their antiproliferative activity on various cancer cell types. Protected sugar derivative 16 was the most active compound in the series, exhibiting potent antiproliferative activity and high selectivity toward ovarian cancer cells (OVCAR-03, GI50 < 0.25 μg mL(-1)); this derivative was more active than the reference drug doxorubicin (OVCAR-03, GI50 = 0.43 μg mL(-1)). In structure-activity relationship (SAR) studies, the physico-chemical parameters of the compounds were evaluated and docking calculations were performed for the α-glucosidase active site to predict the possible mechanism of action of this series of compounds.
Resumo:
Purified genomic DNA can be difficult to obtain from some plant species because of the presence of impurities such as polysaccharides, which are often co-extracted with DNA. In this study, we developed a fast, simple, and low-cost protocol for extracting DNA from plants containing high levels of secondary metabolites. This protocol does not require the use of volatile toxic reagents such as mercaptoethanol, chloroform, or phenol and allows the extraction of high-quality DNA from wild and cultivated tropical species.