996 resultados para Construction Vehicles.
Resumo:
We present a novel, simple and effective approach for tele-operation of aerial robotic vehicles with haptic feedback. Such feedback provides the remote pilot with an intuitive feel of the robot’s state and perceived local environment that will ensure simple and safe operation in cluttered 3D environments common in inspection and surveillance tasks. Our approach is based on energetic considerations and uses the concepts of network theory and port-Hamiltonian systems. We provide a general framework for addressing problems such as mapping the limited stroke of a ‘master’ joystick to the infinite stroke of a ‘slave’ vehicle, while preserving passivity of the closed-loop system in the face of potential time delays in communications links and limited sensor data
Resumo:
This paper proposes the use of optical flow from a moving robot to provide force feedback to an operator's joystick to facilitate collision free teleoperation. Optic flow is measured by wide angle cameras on board the vehicle and used to generate a virtual environmental force that is reflected to the user through the joystick, as well as feeding back into the control of the vehicle. The coupling between optical flow (velocity) and force is modelled as an impedance - in this case an optical impedance. We show that the proposed control is dissipative and prevents the vehicle colliding with the environment as well as providing the operator with a natural feel for the remote environment. The paper focuses on applications to aerial robotics vehicles, however, the ideas apply directly to other force actuated vehicles such as submersibles or space vehicles, and the authors believe the approach has potential for control of terrestrial vehicles and even teleoperation of manipulators. Experimental results are provided for a simulated aerial robot in a virtual environment controlled by a haptic joystick.
Resumo:
This paper describes an autonomous navigation system for a large underground mining vehicle. The control architecture is based on a robust reactive wall-following behaviour. To make it purposeful we provide driving hints derived from an approximate nodal-map. For most of the time, the vehicle is driven with weak localization (odometry). This need only be improved at intersections where decisions must be made – a technique we refer to as opportunistic localization. The paper briefly reviews absolute and relative navigation strategies, and describes an implementation of a reactive navigation system on a 30 tonne Load-Haul-Dump truck. This truck has achieved full-speed autonomous operation at an artificial test mine, and subsequently, at a operational underground mine.
Resumo:
This paper describes technologies we have developed to perform autonomous large-scale off-world excavation. A scale dragline excavator of size similar to that required for lunar excavation was made capable of autonomous control. Systems have been put in place to allow remote operation of the machine from anywhere in the world. Algorithms have been developed for complete autonomous digging and dumping of material taking into account machine and terrain constraints and regolith variability. Experimental results are presented showing the ability to autonomously excavate and move large amounts of regolith and accurately place it at a specified location.
Resumo:
The 5th International Conference on Field and Service Robotics (FSR05) was held in Port Douglas, Australia, on 29th - 31st July 2005, and brought together the worlds' leading experts in field and service automation. The goal of the conference was to report and encourage the latest research and practical results towards the use of field and service robotics in the community with particular focus on proven technology. The conference provided a forum for researchers, professionals and robot manufacturers to exchange up-to-date technical knowledge and experience. Field robots are robots which operate in outdoor, complex, and dynamic environments. Service robots are those that work closely with humans, with particular applications involving indoor and structured environments. There are a wide range of topics presented in this issue on field and service robots including: Agricultural and Forestry Robotics, Mining and Exploration Robots, Robots for Construction, Security & Defence Robots, Cleaning Robots, Autonomous Underwater Vehicles and Autonomous Flying Robots. This meeting was the fifth in the series and brings FSR back to Australia where it was first held. FSR has been held every 2 years, starting with Canberra 1997, followed by Pittsburgh 1999, Helsinki 2001 and Lake Yamanaka 2003.
Resumo:
This paper presents the results of a structural equation model (SEM) for describing and quantifying the fundamental factors that affect contract disputes between owners and contractors in the construction industry. Through this example, the potential impact of SEM analysis in construction engineering and management research is illustrated. The purpose of the specific model developed in this research is to explain how and why contract related construction problems occur. This study builds upon earlier work, which developed a disputes potential index, and the likelihood of construction disputes was modeled using logistic regression. In this earlier study, questionnaires were completed on 159 construction projects, which measured both qualitative and quantitative aspects of contract disputes, management ability, financial planning, risk allocation, and project scope definition for both owners and contractors. The SEM approach offers several advantages over the previously employed logistic regression methodology. The final set of structural equations provides insight into the interaction of the variables that was not apparent in the original logistic regression modeling methodology.
Resumo:
Anecdotal evidence from the infrastructure and building sectors highlights issues of drugs and alcohol and its association with safety risk on construction sites. Operating machinery and mobile equipment, proximity to live traffic together with congested sites, electrical equipment and operating at heights conspire to accentuate the potential adverse impact of drugs and alcohol in the workplace. While most Australian jurisdictions have identified this as a critical safety issue, information is limited regarding the prevalence of alcohol and other drugs in the workplace and there is limited evidential guidance regarding how to effectively and efficiently address such an issue. No known study has scientifically evaluated the relationship between the use of drugs and alcohol and safety impacts in construction, and there has been only limited adoption of nationally coordinated strategies, supported by employers and employees to render it socially unacceptable to arrive at a construction workplace with impaired judgement from drugs and alcohol. A nationally consistent collaborative approach across the construction workforce - involving employers and employees; clients; unions; contractors and sub-contractors is required to engender a cultural change in the construction workforce – in a similar manner to the on-going initiative in securing a cultural change to drink-driving in our society where peer intervention and support is encouraged. This study has four key objectives. Firstly, using the standard World Health Organisation AUDIT, a national qualitative and quantitative assessment of the use of drugs and alcohol will be carried out. This will build upon similar studies carried out in the Australian energy and mining sectors. Secondly, the development of an appropriate industry policy will adopt a non-punitive and rehabilitative approach developed in consultation with employers and employees across the infrastructure and building sectors, with the aim it be adopted nationally for adoption at the construction workplace. Thirdly, an industry-specific cultural change management program will be developed through a nationally collaborative approach to reducing the risk of impaired performance on construction sites and increasing workers’ commitment to drugs and alcohol safety. Finally, an implementation plan will be developed from data gathered from both managers and construction employees. Such an approach stands to benefit not only occupational health and safety, through a greater understanding of the safety impacts of alcohol and other drugs at work, but also alcohol and drug use as a wider community health issue. This paper will provide an overview of the background and significance of the study as well as outlining the proposed methodology that will be used to evaluate the safety impacts of alcohol and other drugs in the construction industry.
Resumo:
-