957 resultados para Connected Vehicle Technology
Resumo:
Drawing upon Brazilian experience, this research explores some of the key issues to be addressed in using e-government technical cooperation designed to enhance service provision of Patent Offices in developing countries. While the development of software applications is often seen merely as a technical engineering exercise, localization and adaptation are context bounded matters that are characterized by many entanglements of human and non-humans. In this work, technical, legal and policy implications of technical cooperation are also discussed in a complex and dynamic implementation environment characterized by the influence of powerful hidden agendas associated with the arena of intellectual property (IP), which are shaped by recent technological, economic and social developments in our current knowledge-based economy. This research employs two different theoretical lenses to examine the same case, which consists of transfer of a Patent Management System (PMS) from the European Patent Office (EPO) to the Brazilian Patent Office that is locally named ‘Instituto Nacional da Propriedade Industrial’ (INPI). Fundamentally, we have opted for a multi-paper thesis comprising an introduction, three scientific articles and a concluding chapter that discusses and compares the insights obtained from each article. The first article is dedicated to present an extensive literature review on e-government and technology transfer. This review allowed the proposition on an integrative meta-model of e-government technology transfer, which is named E-government Transfer Model (ETM). Subsequently, in the second article, we present Actor-Network Theory (ANT) as a framework for understanding the processes of transferring e-government technologies from Patent Offices in developed countries to Patent Offices in developing countries. Overall, ANT is seen as having a potentially wide area of application and being a promising theoretical vehicle in IS research to carry out a social analysis of messy and heterogeneous processes that drive technical change. Drawing particularly on the works of Bruno Latour, Michel Callon and John Law, this work applies this theory to a longitudinal study of the management information systems supporting the Brazilian Patent Office restructuration plan that involved the implementation of a European Patent Management System in Brazil. Based upon the ANT elements, we follow the actors to identify and understand patterns of group formation associated with the technical cooperation between the Brazilian Patent Office (INPI) and the European Patent Office (EPO). Therefore, this research explores the intricate relationships and interactions between human and non-human actors in their attempts to construct various network alliances, thereby demonstrating that technologies embodies compromise. Finally, the third article applies ETM model as a heuristic frame to examine the same case previously studied from an ANT perspective. We have found evidence that ETM has strong heuristic qualities that can guide practitioners who are engaged in the transfer of e-government systems from developed to developing countries. The successful implementation of e-government projects in developing countries is important to stimulate economic growth and, as a result, we need to understand the processes through which such projects are being implemented and succeed. Here, we attempt to improve understanding on the development and stabilization of a complex social-technical system in the arena of intellectual property. Our preliminary findings suggest that e-government technology transfer is an inherently political process and that successful outcomes require continuous incremental actions and improvisations to address the ongoing issues as they emerge.
Resumo:
The number of electronic devices connected to agricultural machinery is increasing to support new agricultural practices tasks related to the Precision Agriculture such as spatial variability mapping and Variable Rate Technology (VRT). The Distributed Control System (DCS) is a suitable solution for decentralization of the data acquisition system and the Controller Area Network (CAN) is the major trend among the embedded communications protocols for agricultural machinery and vehicles. The application of soil correctives is a typical problem in Brazil. The efficiency of this correction process is highly dependent of the inputs way at soil and the occurrence of errors affects directly the agricultural yield. To handle this problem, this paper presents the development of a CAN-based distributed control system for a VRT system of soil corrective in agricultural machinery. The VRT system is composed by a tractor-implement that applies a desired rate of inputs according to the georeferenced prescription map of the farm field to support PA (Precision Agriculture). The performance evaluation of the CAN-based VRT system was done by experimental tests and analyzing the CAN messages transmitted in the operation of the entire system. The results of the control error according to the necessity of agricultural application allow conclude that the developed VRT system is suitable for the agricultural productions reaching an acceptable response time and application error. The CAN-Based DCS solution applied in the VRT system reduced the complexity of the control system, easing the installation and maintenance. The use of VRT system allowed applying only the required inputs, increasing the efficiency operation and minimizing the environmental impact.
Resumo:
Outsourcing logistics has established itself in the area of the LSP (Logistics Service Provider), which offers a range of services to its customers. In this line, transportation is characterized as one of the most important services, and therefore efficient fleet management is essential for establishing a high level of customer service. With advances in technology and vehicle tracking systems, this approach of management has gained new possibilities for the improvement of logistics services. By studying the specific case of an LSP, this paper investigates the use of these technologies in the management of their business and services. The results indicate that the LSP seeks to increase its services and to streamline information in order to respond to customer needs in real time. It is also evident in this case under study that the combination of the technology available together with the fleet management system has become a distinguishing feature for this LSP, one which increases their skills and important information for both customers and business.
Resumo:
In the developed world, grid-connected photovoltaics (PVs) are the fastest-growing segment of the energy market. From 1999 to 2009, this industry had a 42% compound annual growth-rate. From 2009 to 2013, it is expected to grow to 45%, and in 2013 the achievement of grid parity - when the cost of solar electricity becomes competitive with conventional retail (including taxes and charges) grid-supplied electricity - is expected in many places worldwide. Grid-connected PV is usually perceived as an energy technology for developed countries, whereas isolated, stand-alone PV is considered as more suited for applications in developing nations, where so many individuals still lack access to electricity. This rationale is based on the still high costs of PV when compared with conventional electricity. We make the case for grid-connected PV generation in Brazil, showing that with the declining costs of PV and the rising prices of conventional electricity, urban populations in Brazil will also enjoy grid parity in the present decade. We argue that governments in developing nations should act promptly and establish the mandates and necessary conditions for their energy industry to accumulate experience in grid-connected PV, and make the most of this benign technology in the near future. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
To obtain a probiotic caprine Coalho cheese naturally enriched in conjugated linoleic acid (CLA), goats' diet was supplemented with soybean oil to produce CLA-enhanced milk, and Lactobacillus acidophilus La5 was incorporated into cheeses. CLA concentration and probiotic viability were evaluated during 60 days. Four pilot-scale cheese-making trials were manufactured, in triplicates. Cheeses T1 and T2 were produced with control milk, and T3 and T4 with CLA-enhanced milk. L. acidophilus was added to cheeses T2 and T4 during processing. The CLA content (isomer C18:2 cis-9, trans-11) in T3 and T4 was 246% to 291% higher than in T1 and T2 (P < 0.01). Populations of L. acidophilus were around 7.5 log cfu g(-1) in T2 and T4 during the study, and the highest CLA content in T4 did not influence the probiotic viability (P > 0.01). The CLA-enriched probiotic caprine Coalho cheese obtained is proposed as a vehicle for beneficial microorganisms and fatty acids. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The ever-increasing spread of automation in industry puts the electrical engineer in a central role as a promoter of technological development in a sector such as the use of electricity, which is the basis of all the machinery and productive processes. Moreover the spread of drives for motor control and static converters with structures ever more complex, places the electrical engineer to face new challenges whose solution has as critical elements in the implementation of digital control techniques with the requirements of inexpensiveness and efficiency of the final product. The successfully application of solutions using non-conventional static converters awake an increasing interest in science and industry due to the promising opportunities. However, in the same time, new problems emerge whose solution is still under study and debate in the scientific community During the Ph.D. course several themes have been developed that, while obtaining the recent and growing interest of scientific community, have much space for the development of research activity and for industrial applications. The first area of research is related to the control of three phase induction motors with high dynamic performance and the sensorless control in the high speed range. The management of the operation of induction machine without position or speed sensors awakes interest in the industrial world due to the increased reliability and robustness of this solution combined with a lower cost of production and purchase of this technology compared to the others available in the market. During this dissertation control techniques will be proposed which are able to exploit the total dc link voltage and at the same time capable to exploit the maximum torque capability in whole speed range with good dynamic performance. The proposed solution preserves the simplicity of tuning of the regulators. Furthermore, in order to validate the effectiveness of presented solution, it is assessed in terms of performance and complexity and compared to two other algorithm presented in literature. The feasibility of the proposed algorithm is also tested on induction motor drive fed by a matrix converter. Another important research area is connected to the development of technology for vehicular applications. In this field the dynamic performances and the low power consumption is one of most important goals for an effective algorithm. Towards this direction, a control scheme for induction motor that integrates within a coherent solution some of the features that are commonly required to an electric vehicle drive is presented. The main features of the proposed control scheme are the capability to exploit the maximum torque in the whole speed range, a weak dependence on the motor parameters, a good robustness against the variations of the dc-link voltage and, whenever possible, the maximum efficiency. The second part of this dissertation is dedicated to the multi-phase systems. This technology, in fact, is characterized by a number of issues worthy of investigation that make it competitive with other technologies already on the market. Multiphase systems, allow to redistribute power at a higher number of phases, thus making possible the construction of electronic converters which otherwise would be very difficult to achieve due to the limits of present power electronics. Multiphase drives have an intrinsic reliability given by the possibility that a fault of a phase, caused by the possible failure of a component of the converter, can be solved without inefficiency of the machine or application of a pulsating torque. The control of the magnetic field spatial harmonics in the air-gap with order higher than one allows to reduce torque noise and to obtain high torque density motor and multi-motor applications. In one of the next chapters a control scheme able to increase the motor torque by adding a third harmonic component to the air-gap magnetic field will be presented. Above the base speed the control system reduces the motor flux in such a way to ensure the maximum torque capability. The presented analysis considers the drive constrains and shows how these limits modify the motor performance. The multi-motor applications are described by a well-defined number of multiphase machines, having series connected stator windings, with an opportune permutation of the phases these machines can be independently controlled with a single multi-phase inverter. In this dissertation this solution will be presented and an electric drive consisting of two five-phase PM tubular actuators fed by a single five-phase inverter will be presented. Finally the modulation strategies for a multi-phase inverter will be illustrated. The problem of the space vector modulation of multiphase inverters with an odd number of phases is solved in different way. An algorithmic approach and a look-up table solution will be proposed. The inverter output voltage capability will be investigated, showing that the proposed modulation strategy is able to fully exploit the dc input voltage either in sinusoidal or non-sinusoidal operating conditions. All this aspects are considered in the next chapters. In particular, Chapter 1 summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- phase induction machine and compares this solution with two other algorithms presented in literature. Furthermore, in the same chapter, a complete electric drive based on matrix converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is illustrated. Chapter 5 describes the mathematical model of multi-phase induction machines whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies. Chapter 7 discusses the minimization of the power losses in IGBT multi-phase inverters with carrier-based pulse width modulation. In Chapter 8 an extended stator flux vector control for a seven-phase induction motor is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 different fault tolerant control strategies are analyzed. Finally, the last chapter presents a positioning multi-motor drive consisting of two PM tubular five-phase actuators fed by a single five-phase inverter.
Resumo:
Mayer H. Entrepreneurship in a hub-and-spoke industrial district: firm survey evidence from Seattle's technology industry, Regional Studies. The paper investigates entrepreneurial dynamics in a hub-and-spoke industrial district. Using data on the genealogy of high-technology firms in Seattle, Washington State, the study examines the ways in which entrepreneurial firms relate to their parent firms and the role of agglomeration economies. The results illustrate that entrepreneurship is an important vehicle for the diversification of such a district. When compared, hub-related spinoffs such as those founded by former Microsoft employees do not differ much from other start-ups. The differences between Microsoft spinoffs and start-ups are very limited; both diversify the regional economy by entering new markets when compared with their parents.
Resumo:
The use of photovoltaic experimental plants in engineering educational buildings contributes to an increase in acceptance of this technology by future engineers. There are some photovoltaic (PV) systems in educational buildings in Spain, but they are usually limited to buildings in relation to electrical technologies or research areas. They are not common in other educational or official buildings. This paper presents the project of a grid-connected solar plant with two main objectives. First, different PV module technologies will be compared. Second, an emphasis on agronomical areas in educational settings will be reviewed in an attempt to facilitate student engagement in the use of the power plant. The system is grid-connected in order to pay-back the investment in the plant. In fact the electricity generated by the plant will be used by the installations of the building, as it is the closest consumer. This work intends to approximate photovoltaic technology to university degrees not directly related with it and at the same time research in comparison of systems with different technologies. This is a good example of an solar plant for both optimum production and educational purposes.
Resumo:
A broadband primary standard for thermal noise measurements is presented and its thermal and electromagnetic behavior is analyzed by means of analytical and numerical simulation techniques. It consists of a broadband termination connected to a 3.5mm coaxial airline partially immersed in liquid Nitrogen. The main innovative part of the device is the thermal bead between inner and outer conductors, designed for obtaining a proper thermal contact and to keep low both its contribution to the total thermal noise and its reflectivity. A sensitivity analysis is realized in order to fix the manufacturing tolerances for a proper performance in the range 10MHz¿26.5GHz.
Resumo:
In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain given by inverse perspective mapping (IPM) to define a fast and efficient likelihood model. Additionally, the method encompasses an interaction model using Markov Random Fields (MRF) that allows treatment of dependencies between the motions of targets. The proposed method is tested in highway sequences and compared to state-of-the-art methods for vehicle tracking, i.e., independent target tracking with Kalman filtering (KF) and joint tracking with particle filtering. The results showed fewer tracking failures using the proposed method.
Resumo:
This paper presents a novel vehicle to vehicle energy exchange market (V2VEE) between electric vehicles (EVs) for decreasing the energy cost to be paid by some users whose EVs must be recharged during the day to fulfil their daily scheduled trips and also reducing the impact of charging on the electric grid. EVs with excess of energy in their batteries can transfer this energy among other EVs which need charge during their daily trips. These second type of owners can buy the energy directly to the electric grid or they can buy the energy from other EV at lower price. An aggregator is responsible for collecting all information among vehicles located in the same area at the same time and make possible this energy transfer.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
In electric vehicles, passengers sit very close to an electric system of significant power. The high currents achieved in these vehicles mean that the passengers could be exposed to significant magnetic fields. One of the electric devices present in the power train are the batteries. In this paper, a methodology to evaluate the magnetic field created by these batteries is presented. First, the magnetic field generated by a single battery is analyzed using finite elements simulations. Results are compared to laboratory measurements, taken from a real battery, in order to validate the model. After this, the magnetic field created by a complete battery pack is estimated and results are discussed.
Resumo:
Technology helps the Human Resources (HR) department drive for strategic relevance. These two departments are successfully collaborating on major projects in such business-critical areas as e-recruiting, self-service, training, compensation and talent management. Technology is critical in helping increase efficiency, increase attraction and retention, reduce administration and cut costs. In recent years, HR information systems (HRIS) have become more important than ever, this time as an essential part of a company's information security and knowledge fields. Ill-suited benefits and disorganized resources are history; now is the time for customized, dynamic plans and connected systems. Employees will appreciate the HRIS, business will benefit from the HRIS and the HR department will no longer have to be the ugly duckling of the company.