949 resultados para Concentration-time response modelling
Resumo:
Resident, non-immune cells express various pattern-recognition receptors and produce inflammatory cytokines in response to microbial antigens, during the innate immune response. Alveolar bone resorption is the hallmark of destructive periodontitis and it is caused by the host response to bacteria and their mediators present on the biofilm. The balance between the expression levels of receptor activator of nuclear factorkappa B ligand (RANKL) and osteoprotegerin (OPG) is pivotal for osteoclast differentiation and activity and has been implicated in the progression of bone loss in periodontitis. To assess the contribution of resident cells to the bone resorption mediated by innate immune signaling, we stimulated fibroblasts and osteoblastic cells with LPS from. Escherichia coli (TLR4 agonist), Porphyromonas gingivalis (TLR2 and -4 agonist), and interleukin-1 beta (as a control for cytokine signaling through Toll/IL-1receptor domain) in time-response experiments. Expression of RANKL and OPG mRNA was studied by RT-PCR, whereas the production of RANKL protein and the activation of p38 MAPK and NF-kB signaling pathways were analyzed by western blot. We used biochemical inhibitors to assess the relative contribution of p38 MAPK and NF-kB signaling to the expression of RANKL and OPG induced by TLR2, -4 and IL1β in these cells. Both p38 MAPK and NFkB pathways were activated by these stimuli in fibroblasts and osteoblasts, but the kinetics of this activation varied in each cell type and with the nature of the stimulation. E. coli LPS was a stronger inducer of RANKL mRNA in fibroblasts, whereas LPS from P. gingivalis downregulated RANKL mRNA in periodontal ligament cells but increased its expression in osteoblasts. IL-1β induced RANKL in both cell types and without a marked effect on OPG expression. p38 MAPK was more relevant than NF-kB for the expression of RANKL and OPG in these cell types.
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film.
Resumo:
This paper shows the application of a hysteretic model for the Magnetorheological Damper (MRD) placed in the plunge degree-of-freedom of aeroelastic model of a wing. This hysteretic MRD model was developed by the researchers of the French Aerospace Lab. (ONERA) and describe, with a very good precision, the hysteretic behavior of the MRD. The aeroelastic model used in this paper do not have structural nonlinearities, the only nonlinearities showed in the model, are in the unsteady flow equations and are the same proposed by Theodorsen and Wagner in their unsteady aerodynamics theory; and the nonlinearity introduced by the hysteretic model used. The main objective of this paper is show the mathematical modeling of the problem and the equations that describes the aeroelastic response of our problem; and the gain obtained with the introduction of this hysteretic model in the equations with respect to other models that do not show the this behavior, through of pictures that represents the time response and Phase diagrams. These pictures are obtained using flow velocities before and after the flutter velocity. Finally, an open-loop control was made to show the effect of the MRD in the aeroelastic behavior.
Resumo:
Objective: To estimate the prevalence of anemia and analyze the factors associated with anemia in elderly residents of long-term care institutions. Methods: This cross-sectional study was performed in male and female elderly volunteers selected in a two-stage random sampling from long-term care institutions in the city of Maringa, Brazil (2008). A diagnosis of anemia was based on the plasma hemoglobin concentration. The independent variables analyzed were gender, age, time of residence at an institution, body mass index, and serum iron and albumin concentrations. The association between anemia and the variables was assessed using the Poisson regression with robust variance in unadjusted and adjusted analyses, considering a complex sample and a significance level of 5%. Results: The sample included 124 adults older than 60 y residing in long-term care institutions (53.0% female). The prevalence of anemia was 29% and was not significantly associated with gender, serum iron concentration, time of residence at an institution, or body mass index. Conversely, hypoalbuminemia was considered a risk factor for anemia. Conclusion: There is a high prevalence of anemia in the institutionalized elderly and hypoalbuminemia is a factor associated with this outcome. Interventions are necessary to promote improvements in the health and welfare of this population. (C) 2012 Published by Elsevier Inc.
Resumo:
Background and Objective The use of metformin throughout gestation by women with polycystic ovary syndrome (PCOS) and type 2 diabetes mellitus (T2DM) significantly reduces the number of first-trimester spontaneous abortions and the rate of occurrence of gestational diabetes and hypertensive syndromes. Metformin is taken up into renal tubular cells by organic cation transport 2 (OCT2) and eliminated unchanged into the urine. The objective of this study was to analyse the influence of T2DM on the pharmacokinetics of metformin in obese pregnant women and in a control group of non-diabetic obese pregnant women with PCOS. Methods Eight non-diabetic obese pregnant women with PCOS and nine obese pregnant women with T2DM taking oral metformin 850 mg every 12 h were evaluated throughout gestation. Serial blood samples were collected over a 12-h period during the third trimester of pregnancy. Steady-state plasma concentrations of metformin were determined by high-performance liquid chromatography with a UV detector. The pharmacokinetic results of the two groups, reported as median and 25th and 75th percentile, were compared statistically using the Mann Whitney test, with the level of significance set at p < 0.05. Results The pharmacokinetic parameters detected for PCOS versus T2DM patients, reported as median, were, respectively: elimination half-life 3.75 versus 4.00 h; time to maximum concentration 2.00 versus 3.00 h; maximum concentration 1.42 versus 1.21 mu g/mL; mean concentration 0.53 versus 0.56 mu g/mL; area under the plasma concentration time curve from time zero to 12 h 6.42 versus 6.73 mu g.h/mL; apparent total oral clearance 105.39 versus 98.38 L/h; apparent volume of distribution after oral administration 550.51 versus 490.98 L; and fluctuation (maximum minimum concentration variation) of 179.56 versus 181.73%. No significant differences in pharmacokinetic parameters were observed between the groups. Conclusion T2DM in the presence of insulin use does not influence the pharmacokinetics of metformin in pregnant patients, demonstrating the absence of a need to increase the dose, and consequently does not influence the OCT2-mediated transport in pregnant women with PCOS.
Resumo:
This artwork reports on two different projects that were carried out during the three years of Doctor of the Philosophy course. In the first years a project regarding Capacitive Pressure Sensors Array for Aerodynamic Applications was developed in the Applied Aerodynamic research team of the Second Faculty of Engineering, University of Bologna, Forlì, Italy, and in collaboration with the ARCES laboratories of the same university. Capacitive pressure sensors were designed and fabricated, investigating theoretically and experimentally the sensor’s mechanical and electrical behaviours by means of finite elements method simulations and by means of wind tunnel tests. During the design phase, the sensor figures of merit are considered and evaluated for specific aerodynamic applications. The aim of this work is the production of low cost MEMS-alternative devices suitable for a sensor network to be implemented in air data system. The last two year was dedicated to a project regarding Wireless Pressure Sensor Network for Nautical Applications. Aim of the developed sensor network is to sense the weak pressure field acting on the sail plan of a full batten sail by means of instrumented battens, providing a real time differential pressure map over the entire sail surface. The wireless sensor network and the sensing unit were designed, fabricated and tested in the faculty laboratories. A static non-linear coupled mechanical-electrostatic simulation, has been developed to predict the pressure versus capacitance static characteristic suitable for the transduction process and to tune the geometry of the transducer to reach the required resolution, sensitivity and time response in the appropriate full scale pressure input A time dependent viscoelastic error model has been inferred and developed by means of experimental data in order to model, predict and reduce the inaccuracy bound due to the viscolelastic phenomena affecting the Mylar® polyester film used for the sensor diaphragm. The development of the two above mentioned subjects are strictly related but presently separately in this artwork.
Resumo:
In fluid dynamics research, pressure measurements are of great importance to define the flow field acting on aerodynamic surfaces. In fact the experimental approach is fundamental to avoid the complexity of the mathematical models for predicting the fluid phenomena. It’s important to note that, using in-situ sensor to monitor pressure on large domains with highly unsteady flows, several problems are encountered working with the classical techniques due to the transducer cost, the intrusiveness, the time response and the operating range. An interesting approach for satisfying the previously reported sensor requirements is to implement a sensor network capable of acquiring pressure data on aerodynamic surface using a wireless communication system able to collect the pressure data with the lowest environmental–invasion level possible. In this thesis a wireless sensor network for fluid fields pressure has been designed, built and tested. To develop the system, a capacitive pressure sensor, based on polymeric membrane, and read out circuitry, based on microcontroller, have been designed, built and tested. The wireless communication has been performed using the Zensys Z-WAVE platform, and network and data management have been implemented. Finally, the full embedded system with antenna has been created. As a proof of concept, the monitoring of pressure on the top of the mainsail in a sailboat has been chosen as working example.
Resumo:
Il presente lavoro di tesi è frutto di una collaborazione fra il Dipartimento di Chimica Fisica ed Inorganica (gruppo del Prof. Valerio Zanotti – Mattia Vaccari, Dr. Rita Mazzoni) ed il Dipartimento di Chimica Industriale e dei Materiali (gruppo del Prof. Angelo Vaccari – Dr. Thomas Pasini, Dr. Stefania Albonetti, Prof. Fabrizio Cavani) e si inserisce il un progetto volto a valutare l’attività e la selettività del catalizzatore di idrogenazione di Shvo 1, verso l’idrogenazione selettiva del doppio legame polare del 5-idrossimetilfurfurale (HMF) in fase omogenea. L’HMF è un composto di natura organica facilmente ottenibile dalle biomasse, il quale può essere impiegato come building block per ottenere prodotti ad alto valore aggiunto per la chimica fine o additivi per biocarburanti aventi un elevato potere calorifico. In particolare la nostra attenzione si è rivolta alla produzione del 2,5-diidrossimetilfurano (BHMF), un importante building block per la produzione di polimeri e schiume poliuretaniche. Il lavoro di tesi da me svolto ha riguardato la messa a punto di una nuova metodologia sintetica per la preparazione del catalizzatore di Shvo e lo studio della sua attività catalitica nella riduzione di HMF a BHMF. Il comportamento del catalizzatore è stato monitorato studiando la resa in BHMF in funzione di tutti i parametri di reazione: temperatura, pressione di H2, solvente, rapporto molare substrato/catalizzatore, concentrazione, tempo. Successivamente è stata valutata la possibilità di riciclare il catalizzatore recuperando il prodotto di estrazione con acqua, per precipitazione o eseguendo la reazione in miscela bifasica (toluene/H2O). The present work is a collaboration between the Department of Physics and Inorganic Chemistry (group of Prof. Valerio Zanotti - Mattia Vaccari, Dr. Rita Mazzoni) and the Department of Industrial Chemistry and Materials (Group of Prof. Angelo Vaccari - Dr. Thomas Pasini, Dr. Stefania Albonetti, Prof. Fabrizio Cavani), and it’s a project devoted to evaluate the activity and selectivity of the Shvo catalyst, in the selective hydrogenation of polar double bond of 5 -hydroxymethylfurfural (HMF) in homogeneous phase. The HMF is an organic compound easily obtained from biomass, which can be used as a building block for fine chemicals abd polymer production or additives for biofuels with a high calorific value. In particular, our attention turned to the production of 2.5-bishydroxymethylfuran (BHMF), an important building block for the production of polymers and polyurethane foams. This thesis has involved the development of a new synthetic methodology for the preparation of Shvo’s catalyst and the study of its catalytic activity in the reduction of HMF to BHMF. The behavior of the catalyst was monitored by studying the yield in BHMF as a function of all the reaction parameters: temperature, pressure of H2, solvent, substrate to catalyst molar ratio, concentration, time. Subsequently it was evaluated the possibility of recycling the catalyst recovering the product of extraction with water, by precipitation or performing the reaction in biphasic mixture (toluene/H2O).
Resumo:
The pharmacokinetic interaction between atovaquone, a 1,4-hydroxynaphthoquinone, and zidovudine was examined in an open, randomized, three-phase crossover study in 14 patients infected with human immunodeficiency virus. Atovaquone (750 mg every 12 hours) and zidovudine (200 mg every 8 hours) were given orally alone and in combination. Atovaquone significantly increased the area under the zidovudine concentration-time curve (AUC) (1.82 +/- 0.62 micrograms.hr/ml versus 2.39 +/- 0.68 micrograms.hr/ml; p < 0.05) and decreased the oral clearance of zidovudine (2029 +/- 666 ml/min versus 1512 +/- 464 ml/min; p < 0.05). In contrast, atovaquone tended to decrease the AUC of zidovudine-glucuronide (7.31 +/- 1.51 micrograms.hr/ml versus 6.89 +/- 1.42 micrograms.hr/ml; p < 0.1) and significantly decreased the ratio of AUC zidovudine-glucuronide/AUC zidovudine (4.48 +/- 1.94 versus 3.12 +/- 1.1; p < 0.05). The maximum concentration of zidovudine-glucuronide was significantly lowered by atovaquone (5.7 +/- 1.5 versus 4.57 +/- 0.97 micrograms/ml; p < 0.05). Zidovudine had no effect on the pharmacokinetic disposition of atovaquone. Atovaquone appears to increase the AUC of zidovudine by inhibiting the glucuronidation of zidovudine.
Resumo:
BACKGROUND: The Anesthetic Conserving Device (AnaConDa) uncouples delivery of a volatile anesthetic (VA) from fresh gas flow (FGF) using a continuous infusion of liquid volatile into a modified heat-moisture exchanger capable of adsorbing VA during expiration and releasing adsorbed VA during inspiration. It combines the simplicity and responsiveness of high FGF with low agent expenditures. We performed in vitro characterization of the device before developing a population pharmacokinetic model for sevoflurane administration with the AnaConDa, and retrospectively testing its performance (internal validation). MATERIALS AND METHODS: Eighteen females and 20 males, aged 31-87, BMI 20-38, were included. The end-tidal concentrations were varied and recorded together with the VA infusion rates into the device, ventilation and demographic data. The concentration-time course of sevoflurane was described using linear differential equations, and the most suitable structural model and typical parameter values were identified. The individual pharmacokinetic parameters were obtained and tested for covariate relationships. Prediction errors were calculated. RESULTS: In vitro studies assessed the contribution of the device to the pharmacokinetic model. In vivo, the sevoflurane concentration-time courses on the patient side of the AnaConDa were adequately described with a two-compartment model. The population median absolute prediction error was 27% (interquartile range 13-45%). CONCLUSION: The predictive performance of the two-compartment model was similar to that of models accepted for TCI administration of intravenous anesthetics, supporting open-loop administration of sevoflurane with the AnaConDa. Further studies will focus on prospective testing and external validation of the model implemented in a target-controlled infusion device.
Resumo:
Sr2+ co-doped LaBr3:5%Ce scintillators show a record low energy resolution of 2% at 662 keV and a considerably better proportional response compared to standard LaBr3:5%Ce. This paper reports on the optical properties and time response of Sr co-doped LaBr3:5%Ce. Multiple excitation and emission bands were observed in X-ray and optically excited luminescence measurements. Those bands are ascribed to three different Ce3+ sites. The first is the unperturbed site with the same luminescence properties as those of standard LaBr3:Ce. The other two are perturbed sites with red-shifted 4f-5d1 Ce3+ excitation and emission bands, longer Ce3+ decay times, and smaller Stokes shifts. The lowering of the lowest 5d level of Ce3+ was ascribed to larger crystal field interactions at the perturbed sites. Two types of point defects in the LaBr3 matrix were proposed to explain the observed results. No Ce4+ ions were detected in Sr co-doped LaBr3:5%Ce by diffuse reflectance measurements.
Resumo:
Abstract Claystones are considered worldwide as barrier materials for nuclear waste repositories. In the Mont Terri underground research laboratory (URL), a nearly 4-year diffusion and retention (DR) experiment has been performed in Opalinus Clay. It aimed at (1) obtaining data at larger space and time scales than in laboratory experiments and (2) under relevant in situ conditions with respect to pore water chemistry and mechanical stress, (3) quantifying the anisotropy of in situ diffusion, and (4) exploring possible effects of a borehole-disturbed zone. The experiment included two tracer injection intervals in a borehole perpendicular to bedding, through which traced artificial pore water (APW) was circulated, and a pressure monitoring interval. The APW was spiked with neutral tracers (HTO, HDO, H2O-18), anions (Br, I, SeO4), and cations (Na-22, Ba-133, Sr-85, Cs-137, Co-60, Eu-152, stable Cs, and stable Eu). Most tracers were added at the beginning, some were added at a later stage. The hydraulic pressure in the injection intervals was adjusted according to the measured value in the pressure monitoring interval to ensure transport by diffusion only. Concentration time-series in the APW within the borehole intervals were obtained, as well as 2D concentration distributions in the rock at the end of the experiment after overcoring and subsampling which resulted in �250 samples and �1300 analyses. As expected, HTO diffused the furthest into the rock, followed by the anions (Br, I, SeO4) and by the cationic sorbing tracers (Na-22, Ba-133, Cs, Cs-137, Co-60, Eu-152). The diffusion of SeO4 was slower than that of Br or I, approximately proportional to the ratio of their diffusion coefficients in water. Ba-133 diffused only into �0.1 m during the �4 a. Stable Cs, added at a higher concentration than Cs-137, diffused further into the rock than Cs-137, consistent with a non-linear sorption behavior. The rock properties (e.g., water contents) were rather homogeneous at the centimeter scale, with no evidence of a borehole-disturbed zone. In situ anisotropy ratios for diffusion, derived for the first time directly from field data, are larger for HTO and Na-22 (�5) than for anions (�3�4 for Br and I). The lower ionic strength of the pore water at this location (�0.22 M) as compared to locations of earlier experiments in the Mont Terri URL (�0.39 M) had no notable effect on the anion accessible pore fraction for Cl, Br, and I: the value of 0.55 is within the range of earlier data. Detailed transport simulations involving different codes will be presented in a companion paper.