921 resultados para Concentration, spatial autocorrelation, local Gini index, Moran and Geary indices, neighbourhood
(Table S2) TEX86 and UK'37 index values and inferred sea surface temperatures for ODP Hole 189-1172A
Resumo:
Proper management of the N applied to crops is necessary in order to increase yield, improve water use efficiency (WUE) and reduce the pollutions risks with the least economic, environmental and health costs. A field study with melon crops was conducted during 2005, 2006 and 2007 in central Spain, using 11 different amounts of N. Some environmental indexes have been proposed, to provide an essential tool for determining the groundwater pollution risks associated with common agricultural practices. These indexes are related to variation in the nitrate concentration of drinking water (Impact Index (II)) and groundwater (Environmental Impact Index (EII)). Also, the Management Efficiency (ME) was calculated, which is related to the amount of fruit produced per gram of N leached (Nl). To determine the optimum dose of N, it was also necessary to know the N mineralisation (NM). Our results show that 160 kg ha?1 of available N (Nav) produced the maximum fruit yield (FY), enhanced WUE and gave an NM of 85 kg ha?1, while the impact indexes did not exceed the fixed maximum allowable limits and ME was adequate. The proposed indexes proved to be an effective tool for determining the risk of nitrate contamination and confirmed that the optimum dose of N corresponded to the maximum FY with minimal loss of Nl.
Resumo:
Proper management of the N applied to crops is necessary in order to increase yield, improve water use efficiency (WUE) and reduce the pollutions risks with the least economic, environmental and health costs. A field study with melon crops was conducted during 2005, 2006 and 2007 in central Spain, using 11 different amounts of N. Some environmental indexes have been proposed, to provide an essential tool for determining the groundwater pollution risks associated with common agricultural practices. These indexes are related to variation in the nitrate concentration of drinking water (Impact Index (II)) and groundwater (Environmental Impact Index (EII)). Also, the Management Efficiency (ME) was calculated, which is related to the amount of fruit produced per gram of N leached (Nl). To determine the optimum dose of N, it was also necessary to know the N mineralisation (NM). Our results show that 160 kg ha−1 of available N (Nav) produced the maximum fruit yield (FY), enhanced WUE and gave an NM of 85 kg ha−1, while the impact indexes did not exceed the fixed maximum allowable limits and ME was adequate. The proposed indexes proved to be an effective tool for determining the risk of nitrate contamination and confirmed that the optimum dose of N corresponded to the maximum FY with minimal loss of Nl.
Resumo:
Because of the high number of crashes occurring on highways, it is necessary to intensify the search for new tools that help in understanding their causes. This research explores the use of a geographic information system (GIS) for an integrated analysis, taking into account two accident-related factors: design consistency (DC) (based on vehicle speed) and available sight distance (ASD) (based on visibility). Both factors require specific GIS software add-ins, which are explained. Digital terrain models (DTMs), vehicle paths, road centerlines, a speed prediction model, and crash data are integrated in the GIS. The usefulness of this approach has been assessed through a study of more than 500 crashes. From a regularly spaced grid, the terrain (bare ground) has been modeled through a triangulated irregular network (TIN). The length of the roads analyzed is greater than 100 km. Results have shown that DC and ASD could be related to crashes in approximately 4% of cases. In order to illustrate the potential of GIS, two crashes are fully analyzed: a car rollover after running off road on the right side and a rear-end collision of two moving vehicles. Although this procedure uses two software add-ins that are available only for ArcGIS, the study gives a practical demonstration of the suitability of GIS for conducting integrated studies of road safety.
Resumo:
The influence of feed form and energy concentration of the diet on growth performance and the development of the gastrointestinal tract (GIT) was studied in brown-egg laying pullets. Diets formed a 2 x 5 factorial with 2 feed forms (mash vs. crumbles) and 5 levels of energy differing in 50 kcal AMEn/kg. For the entire study (0 to 17 wk of age) feeding crumbles increased ADFI (52.9 vs. 49.7 g; P < 0.001) and ADG (12.7 vs. 11.6 g; P < 0.001) and improved feed conversion ratio (FCR; 4.18 vs. 4.27; P < 0.001). An increase in the energy content of the diet decreased ADFI linearly (P < 0.001) and improved FCR quadratically (P < 0.01) but energy intake (kcal AMEn/d) was not affected. BW uniformity was higher (P < 0.05) in pullets fed crumbles than in those fed mash but was not affected (P > 0.05) by energy content of the diet. At 5, 10, and 17 wk of age, the relative weight (RW, % BW) of the GIT and the gizzard, and gizzard digesta content were lower (P < 0.05 to P < 0.001) and gizzard pH was higher (P < 0.05 to P < 0.001) in pullets fed crumbles than in pullets fed mash. Energy concentration of the diet did not affect any of the GIT variables studied. In summary, feeding crumbles improved pullet performance and reduced the RW of the GIT and gizzard, and increased gizzard pH at all ages. An increase in the energy content of the diet improved FCR from 0 to 17 wk of age. The use of crumbles and the increase in the AMEn content of the diet might be used adventageously when the objetive is to increase the BW of the pullets. However, crumbles affected the development and weight of the organs of the GIT, which might have negative effects on feed intake and egg production at the beginning of the egg laying cycle.
Resumo:
The development of improved technology for agricultural production and its diffusion to farmers is a process requiring investment and time. A large number of studies of this process have been undertaken. The findings of these studies have been incorporated into a quantitative policy model projecting supplies of commodities (in terms of area and crop yields), equilibrium prices, and international trade volumes to the year 2020. These projections show that a “global food crisis,” as would be manifested in high commodity prices, is unlikely to occur. The same projections show, however, that in many countries, “local food crisis,” as manifested in low agricultural incomes and associated low food consumption in the presence of low food prices, will occur. Simulations show that delays in the diffusion of modern biotechnology research capabilities to developing countries will exacerbate local food crises. Similarly, global climate change will also exacerbate these crises, accentuating the importance of bringing strengthened research capabilities to developing countries.