915 resultados para Computer Vision Android
Resumo:
Projective homography sits at the heart of many problems in image registration. In addition to many methods for estimating the homography parameters (R.I. Hartley and A. Zisserman, 2000), analytical expressions to assess the accuracy of the transformation parameters have been proposed (A. Criminisi et al., 1999). We show that these expressions provide less accurate bounds than those based on the earlier results of Weng et al. (1989). The discrepancy becomes more critical in applications involving the integration of frame-to-frame homographies and their uncertainties, as in the reconstruction of terrain mosaics and the camera trajectory from flyover imagery. We demonstrate these issues through selected examples
Resumo:
We present a georeferenced photomosaic of the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge, 37°18’N). The photomosaic was generated from digital photographs acquired using the ARGO II seafloor imaging system during the 1996 LUSTRE cruise, which surveyed a ~1 km2 zone and provided a coverage of ~20% of the seafloor. The photomosaic has a pixel resolution of 15 mm and encloses the areas with known active hydrothermal venting. The final mosaic is generated after an optimization that includes the automatic detection of the same benthic features across different images (feature-matching), followed by a global alignment of images based on the vehicle navigation. We also provide software to construct mosaics from large sets of images for which georeferencing information exists (location, attitude, and altitude per image), to visualize them, and to extract data. Georeferencing information can be provided by the raw navigation data (collected during the survey) or result from the optimization obtained from imatge matching. Mosaics based solely on navigation can be readily generated by any user but the optimization and global alignment of the mosaic requires a case-by-case approach for which no universally software is available. The Lucky Strike photomosaics (optimized and navigated-only) are publicly available through the Marine Geoscience Data System (MGDS, http://www.marine-geo.org). The mosaic-generating and viewing software is available through the Computer Vision and Robotics Group Web page at the University of Girona (http://eia.udg.es/_rafa/mosaicviewer.html)
Resumo:
The relief of the seafloor is an important source of data for many scientists. In this paper we present an optical system to deal with underwater 3D reconstruction. This system is formed by three cameras that take images synchronously in a constant frame rate scheme. We use the images taken by these cameras to compute dense 3D reconstructions. We use Bundle Adjustment to estimate the motion ofthe trinocular rig. Given the path followed by the system, we get a dense map of the observed scene by registering the different dense local reconstructions in a unique and bigger one
Resumo:
In this paper, we present a method to deal with the constraints of the underwater medium for finding changes between sequences of underwater images. One of the main problems of underwater medium for automatically detecting changes is the low altitude of the camera when taking pictures. This emphasise the parallax effect between the images as they are not taken exactly at the same position. In order to solve this problem, we are geometrically registering the images together taking into account the relief of the scene
Resumo:
Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.
Resumo:
This research extends a previously developed work concerning about the use of local model predictive control in mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The platformused is a differential driven robot with a free rotating wheel. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are also introduced. In this sense, monocular image data provide an occupancy grid where safety trajectories are computed by using goal attraction potential fields
Resumo:
Treball final de carrera basat en el reconeixement de punts clau en imatges mitjançant l'algorisme Random Ferns.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
Commercially available instruments for road-side data collection take highly limited measurements, require extensive manual input, or are too expensive for widespread use. However, inexpensive computer vision techniques for digital video analysis can be applied to automate the monitoring of driver, vehicle, and pedestrian behaviors. These techniques can measure safety-related variables that cannot be easily measured using existing sensors. The use of these techniques will lead to an improved understanding of the decisions made by drivers at intersections. These automated techniques allow the collection of large amounts of safety-related data in a relatively short amount of time. There is a need to develop an easily deployable system to utilize these new techniques. This project implemented and tested a digital video analysis system for use at intersections. A prototype video recording system was developed for field deployment. A computer interface was implemented and served to simplify and automate the data analysis and the data review process. Driver behavior was measured at urban and rural non-signalized intersections. Recorded digital video was analyzed and used to test the system.
Resumo:
La segmentació de persones es molt difícil a causa de la variabilitat de les diferents condicions, com la postura que aquestes adoptin, color del fons, etc. Per realitzar aquesta segmentació existeixen diferents tècniques, que a partir d'una imatge ens retornen un etiquetat indicant els diferents objectes presents a la imatge. El propòsit d'aquest projecte és realitzar una comparativa de les tècniques recents que permeten fer segmentació multietiqueta i que son semiautomàtiques, en termes de segmentació de persones. A partir d'un etiquetatge inicial idèntic per a tots els mètodes utilitzats, s'ha realitzat una anàlisi d'aquests, avaluant els seus resultats sobre unes dades publiques, analitzant 2 punts: el nivell de interacció i l'eficiència.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
El principal objectiu d’aquest projecte és aconseguir classificar diferents vídeos d’esports segons la seva categoria. Els cercadors de text creen un vocabulari segons el significat de les diferents paraules per tal de poder identificar un document. En aquest projecte es va fer el mateix però mitjançant paraules visuals. Per exemple, es van intentar englobar com a una única paraula les diferents rodes que apareixien en els cotxes de rally. A partir de la freqüència amb què apareixien les paraules dels diferents grups dins d’una imatge vàrem crear histogrames de vocabulari que ens permetien tenir una descripció de la imatge. Per classificar un vídeo es van utilitzar els histogrames que descrivien els seus fotogrames. Com que cada histograma es podia considerar un vector de valors enters vàrem optar per utilitzar una màquina classificadora de vectors: una Support vector machine o SVM
Resumo:
In robotics, having a 3D representation of the environment where a robot is working can be very useful. In real-life scenarios, this environment is constantly changing for example by human interaction, external agents or by the robot itself. Thus, the representation needs to be constantly updated and extended to account for these dynamic scene changes. In this work we face the problem of representing the scene where a robot is acting. Moreover, we ought to improve this representation by reusing the information obtained in previous scenes. Our goal is to build a method to represent a scene and to update it while changes are produced. In order to achieve that, different aspects of computer vision such as space representation or feature tracking are discussed
Resumo:
Laajojen pintojen kuvaaminen rajoitetussa työskentelytilassa riittävällä kuvatarkkuudella voi olla vaikeaa. Kuvaaminen on suoritettava osissa ja osat koottava saumattomaksi kokonaisnäkymäksi eli mosaiikkikuvaksi. Kuvauslaitetta käsin siirtelevän käyttäjän on saatava välitöntä palautetta, jotta mosaiikkiin ei jäisi aukkoja ja työ olisi nopeaa. Työn tarkoituksena oli rakentaa pieni, kannettava ja tarkka kuvauslaite paperi- ja painoteollisuuden tarpeisiin sekä kehittää palautteen antamiseen menetelmä, joka koostaaja esittää karkeaa mosaiikkikuvaa tosiajassa. Työssä rakennettiin kaksi kuvauslaitetta: ensimmäinen kuluttajille ja toinen teollisuuteen tarkoitetuista osista. Kuvamateriaali käsiteltiin tavallisella pöytätietokoneella. Videokuvien välinen liike laskettiin yksinkertaisella seurantamenetelmällä ja mosaiikkikuvaa koottiin kameroiden kuvanopeudella. Laskennallista valaistuksenkorjausta tutkittiin ja kehitetty menetelmä otettiin käyttöön. Ensimmäisessä kuvauslaitteessa on ongelmia valaistuksen ja linssivääristymien kanssa tuottaen huonolaatuisia mosaiikkikuvia. Toisessa kuvauslaitteessa nämä ongelmat on korjattu. Seurantamenetelmä toimii hyvin ottaen huomioon sen yksinkertaisuuden ja siihen ehdotetaan monia parannuksia. Työn tulokset osoittavat, että tosiaikainen mosaiikkikuvan koostaminen megapikselin kuvamateriaalista on mahdollista kuluttajille tarkoitetulla tietokonelaitteistolla.
Resumo:
Multispectral images contain information from several spectral wavelengths and currently multispectral images are widely used in remote sensing and they are becoming more common in the field of computer vision and in industrial applications. Typically, one multispectral image in remote sensing may occupy hundreds of megabytes of disk space and several this kind of images may be received from a single measurement. This study considers the compression of multispectral images. The lossy compression is based on the wavelet transform and we compare the suitability of different waveletfilters for the compression. A method for selecting a wavelet filter for the compression and reconstruction of multispectral images is developed. The performance of the multidimensional wavelet transform based compression is compared to other compression methods like PCA, ICA, SPIHT, and DCT/JPEG. The quality of the compression and reconstruction is measured by quantitative measures like signal-to-noise ratio. In addition, we have developed a qualitative measure, which combines the information from the spatial and spectral dimensions of a multispectral image and which also accounts for the visual quality of the bands from the multispectral images.