956 resultados para Complete denture - Disinfection
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the influence of microwave disinfection on the strength of intact and relined denture bases. Water sorption and solubility were also evaluated. A heat-polymerized acrylic resin (Lucitone 550) was used to construct 4-mm-thick (n = 40) and 2-mm-thick (n = 160) denture bases. Denture bases (2mm) were relined with an autopolymerizing resin (Tokuso Rebase Fast, Ufi Gel Hard, Kooliner, or New Truliner). Specimens were divided into four groups (n = 10): without treatment, one or seven cycles of microwave disinfection (650 W for 6 min), and water storage at 37 degrees C for 7 days. Specimens were vertically loaded (5 mm/min) until failure. Disc-shaped specimens (50 min x 0.5 mm) were fabricated (n = 10) to evaluate water sorption and solubility. Data on maximum fracture load (N), deflection (%), and solubility (%) were analyzed by two-way analysis of variance and Student-Newman-Keuls tests (alpha = 0.05). One cycle of microwave disinfection decreased the deflection at fracture and fracture energy of Tokuso Rebase Fast and New Truliner specimens. The strength of denture bases microwaved daily for 7 days was similar to the strength of those immersed in water for 7 days. Microwave disinfection increased the water sorption of all materials and affected the solubility of the reline materials. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: The purpose of this study was to investigate the effect of thermal cycling and disinfection on the colour change of denture base acrylic resin. Materials and Methods: Four different brands of acrylic resins were evaluated (Onda Cryl, QC 20, Classico and Lucitone). All brands were divided into four groups (n=7) determined according to the disinfection procedure (microwave, Efferdent, 4% chlorhexidine or 1% hypochlorite). The treatments were conducted three times a week for 60days. All specimens were thermal cycled between 5 and 55°C with 30-s dwell times for 1000 cycles before and after disinfection. The specimens' colour was measured with a spectrophotometer using the CIE L*a*b* system. The evaluations were conducted at baseline (B), after first thermal cycling (T 1), after disinfection (D) and after second thermal cycling (T 2). Colour differences (ΔE) were calculated between T 1 and B (T 1B), D and B (DB), and T 2 and B (T 2B) time-points. Results: The samples submitted to disinfection by microwave and Efferdent exhibited the highest values of colour change. There were significant differences on colour change between the time-points, except for the Lucitone acrylic resin. Conclusions: The thermal cycling and disinfection procedures significantly affected the colour stability of the samples. However, all values obtained for the acrylic resins are within acceptable clinical parameters. © 2012 The Gerodontology Society and John Wiley & Sons A/S.
Resumo:
The purpose of this study was to investigate the effect of thermal cycling and disinfection on the microhardness of acrylic resins denture base. Four different brands of acrylic resins were evaluated: Onda Cryl, QC 20, Classico and Lucitone. Each brand of acrylic resin was divided into four groups (n = 7) according to the disinfection method (microwave, Efferdent, 4% chlorhexidine and 1% hypochlorite). Samples were disinfected during 60 days. Before and after disinfection, samples were thermal cycled between 5-55 °C with 30-s dwell times for 1000 cycles. The microhardness was measured using a microhardener, at baseline (B), after first thermal cycling (T1), after disinfection (D) and after second thermal cycling (T2). The microhardness values of all groups reduced over time. QC-20 acrylic resin exhibited the lowest microhardness values. At B and T1 periods, the acrylic resins exhibited statistically greater microhardness values when compared to D and T2 periods. It can be concluded that the microhardness values of the acrylic resins denture base were affected by the thermal cycling and disinfection procedures. However, all microhardness values obtained herein are within acceptable clinical limits for the acrylic resins. © 2013 Informa UK Ltd.
Resumo:
Objective:This study investigated the efficacy of different techniques for the union of fragments of a denture before repair and on the accuracy of the reposition.Materials and methods:For this study, 20 maxillary dentures made with Lucitone 550 heat-cured resin were used. Points were determined with a scanner on the cusp of the teeth, as a measurement of the segments. After digitisation, each model was exported to the AUTOCAD R 14 program and two-dimensional measurements of the distances between the marked points were made. After the initial analysis, the dentures were fractured into two segments using an impact test machine. For the repair, maxillary dentures were divided into two groups; in the first, the repair was carried out using Kerr's sticky wax and in the second group, Super Bonder was used to join the fragments, with subsequent inclusion of DENTSPLY((R)) Repair Material resin. After the repair, the points of the maxillary dentures were measured again. The numerical values obtained were tabulated to compare the measurements before fracture and after the repair. For statistical analysis, analysis of variance was employed, using a single factor and double factor, followed by the Tukey test with a reliability of 95%.Results:The results demonstrated a statistically significant difference between the materials used to join the dentures for repair, where the dentures were joined with sticky wax presented a larger variation in the distances between the points.Conclusion:The variation in distances between the points is influenced by the agent of repair.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cylinders (3.5 x 5.0 mm) of the reline resins Kooliner (K), New Truliner (N), Tokuso Rebase Fast (T), and Ufi Gel Hard (U) were bonded to cylinders (20 x 20 mm) of the denture base resin Lucitone 550 (L), and samples were divided into two controls and four test groups (n = 8). Shear tests (0.5 mm/min) were performed after polymerization or immersion in water (37 degrees C) for 7 days (controls); two or seven cycles of disinfection by immersion in sodium perborate (50 degrees C/10 min) or microwave irradiation (650 W/6 min). Statistical analyses (alpha = 0.05) revealed that two cycles of microwave and chemical disinfection increased the mean bond strengths of materials T (9.08 to 12.93 MPa) and L (18.89 to 23.02 MPa). For resin L, seven cycles of chemical (15.72 MPa) and microwave (17.82 MPa) disinfection decreased the shear bond strength compared with the respective control (21.74 MPa). Resins U (13.12 MPa), K (8.44 MPa), and N (7.98 MPa) remained unaffected.
Resumo:
Statement of the problem. In selecting a disinfectant for dental prostheses, compatibility between the disinfectant and the type of denture base material must be considered to avoid adverse effects on the hardness of the acrylic resin.Purpose. This study investigated the hardness of 2 denture base resins after disinfection and long-term water immersion.Material and methods. Thirty-two disk-shaped specimens (13 mm in diameter and 8 mm thick) were fabricated from each resin (Lucitone 550 and QC-20), polished, stored in water at 37degreesC for 48 hours, and submitted to hardness tests (Vickers hardness number [VHN]) before disinfection. Disinfection methods included scrubbing with 4% chlorhexidine gluconate for 1 minute, immersion for 10 minutes in I of the tested disinfectant Solutions (n=8) (3.78% sodium perborate, 4% chlorhexidine gluconate, or 1% sodium hypochorite), and immersion in water for 3 minutes. The disinfection procedures were repeated 4 times, and 12 hardness measurements were made on each specimen. Control specimens (not disinfected) were stored in water for 56 minutes. Hardness tests (VHN) were also performed after 15, 30, 60, 90, and 120 days of storage in water. Statistical analyses of data were conducted with a repeated measures 3-way analysis of variance (ANOVA) and Tukey post-hoc test (alpha=.05).Results. Mean values +/- SD for Lucitone 550 (16.52 +/- 0.94 VHN) and QC-20 (9.61 +/- 0.62 VHN) demonstrated a significant (P<.05) decrease in hardness after disinfection, regardless of material and disinfectant solutions used (Lucitone 550: 15.25 +/- 0.74; QC-20: 8.09 +/- 0.39). However, this effect was reversed after 15 days of storage in water. Both materials exhibited a continuous increase (P<.05) in hardness values for up to 60 days of water storage, after which no significant change was observed.Conclusion. Within the limitations of this in vitro study, QC-20 and Lucitone 550 specimens exhibited significantly lower hardness values after disinfection regardless of the disinfectant solution used.
Resumo:
Objectives: This study investigated the effect of microwave disinfection (650 W/6 min) on the flexural strength of five hard chairside reline resins (Kooliner, Duraliner II, Tokuso Rebase Fast, Ufi Get Hard, New Truliner) and one denture base resin (Lucitone 550).Methods: Thirty-two specimens (3.1x10x64 mm) from each acrylic resin were produced and divided into four groups of eight specimens each. The flexural test was performed after polymerization (G1), after two cycles of microwave disinfection (G2), after 7 days storage in water at 37 degrees C (G3) and after seven cycles of microwave disinfection (G4). Specimens from group G4 were microwaved daily being stored in water at 37 degrees C between exposures. The specimens were placed in three-point bend fixture in a MTS machine and loaded until failure. The flexural values (MPa) were submitted to ANOVA and Tukey's test (p=0.05).Results: Two cycles of microwave disinfection promoted a significant increase in flexural strength for materials Kooliner and Lucitone 550. After seven cycles of microwave disinfection, materials Kooliner and New Truliner showed a significant increase (p<0.05) in flexural values. The flexural strength of the material Tokuso Rebase was not significantly affected by microwave irradiation. Seven cycles of microwave disinfection resulted in a significant decrease in the flexural strength of material Duraliner II. Material Ufi Get Hard was the only resin detrimentally affected by microwave disinfection after two and seven cycles.Conclusions: Microwave disinfection did not adversely affect the flexural strength of all tested materials with the exception of material Ufi Get Hard. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This investigation studied the effects of disinfectant solutions on the hardness of acrylic resin denture teeth. The occlusal surfaces of 64 resin denture teeth were ground flat with abrasives up to 400-grit silicon carbide paper. Measurements were made after polishing and after the specimens were stored in water at 37 degreesC for 48 h. The specimens were then divided into four groups and immersed in chemical disinfectants (4% chlorhexidine; 1% sodium hypochlorite and sodium perborate) for 10 min. The disinfection methods were performed twice to simulate clinical conditions and hardness measurements were made. Specimens tested as controls were immersed in water during the same disinfection time. Eight specimens were produced for each group. After desinfection procedures, testing of hardness was also performed after the samples were stored at 37 degreesC for 7, 30, 60, 90 and 120 days. Data were analysed using two-way analysis of variance (anova) and Tukey's test at 95% confidence level. According to the results, no significant differences were found between materials and immersion solutions (P > 0.05). However, a continuous decrease in hardness was noticed after ageing (P < 0.05). It was conclude that the surfaces of both acrylic resin denture teeth softened upon immersion in water regardless the disinfecting solution.