976 resultados para Comparative genomic hybridisation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied loss of heterozygosity at the BRCA1 and BRCA2 loci in 992 normal cell clones derived from topographically defined areas of normal tissue in four samples from BRCA1/BRCA2 mutation carriers. The frequency of loss of heterozygosity in the clones was low ( 1.01%), but it was found in all four samples, whether or not a tumour was present. Topographical mapping revealed that the genetic changes were clustered in some breast samples. Our study confirms the previous finding that a field of genetic instability can exist around a tumour, suggesting that sufficient tissue must be removed at surgery to avoid local recurrence. We also demonstrate that such a field of genetic change can exist in morphologically normal tissue before a tumour develops and, for the first time, we demonstrate that the field is of a size greater than one terminal duct-lobular unit. The genetic changes are not identical, however, which suggests that genetic instability in these regions may play an early role in tumour development. We also confirm and extend our original observation of loss of the wild-type BRCA1 allele in some clones, and loss of the mutant allele in others, demonstrating that loss of either allele is a stochastic event.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lobular carcinoma in situ was first described over 60 years ago. Despite the long history, it continues to pose significant difficulties in screening, diagnosis, management and treatment. This is partly due its multi-focal and bilateral presentation, an incomplete understanding of its biology and natural history and perpetuation of misconceptions gathered over the last decades. In this review, the working group on behalf of EUSOMA has attempted to summarise the current thinking and management of this interesting lesion. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Classic lobular carcinomas (CLC) account for 10% to 15% of all breast cancers. At the genetic level, CLCs show recurrent physical loss of chromosome16q coupled with the lack of E-cadherin (CDH1 gene) expression. However, little is known about the putative therapeutic targets for these tumors. The aim of this study was to characterize CLCs at the molecular genetic level and identify putative therapeutic targets. Experimental Design: We subjected 13 cases of CLC to a comprehensive molecular analysis including immunohistochemistry for E-cadherin, estrogen and progesterone receptors, HER2/ neu and p53; high-resolution comparative genomic hybridization (HR-CGH); microarray-based CGH (aCGH); and fluorescent and chromogenic in situ hybridization for CCND1 and FGFR1. Results: All cases lacked the expression of E-cadherin, p53, and HER2, and all but one case was positive for estrogen receptors. HR-CGH revealed recurrent gains on 1q and losses on 16q (both, 85%). aCGH showed a good agreement with but higher resolution and sensitivity than HR-CGH. Recurrent, high level gains at 11q13 (CCND1) and 8p12-p11.2 were identified in seven and six cases, respectively, and were validated with in situ hybridization. Examination of aCGH and the gene expression profile data of the cell lines, MDA-MB-134 and ZR-75-1, which harbor distinct gains of 8p12-p11.2, identified FGFR1 as a putative amplicon driver of 8p12-p11.2 amplification in MDA-MB-134. Inhibition of FGFR1 expression using small interfering RNA or a small-molecule chemical inhibitor showed that FGFR1 signaling contributes to the survival of MDA-MB-134 cells. Conclusions: Our findings suggest that receptor FGFR1 inhibitors may be useful as therapeutics in a subset of CLCs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective To determine the long-term health and development of a cohort of children in whom confined placental mosaicism (CPM) was diagnosed at prenatal diagnosis. Methods A retrospective cohort study was performed comparing 36 children in whom CPM had been diagnosed prenatally with 195 controls subjects in whom a normal karyotype had been detected prenatally. Data comprising birth information, health, health service utilisation, growth, development, behaviour, and the family were collected by a maternal questionnaire administered when the subjects were aged between 4 and 11 years. Results CPM cases did not differ from controls across a broad range of health measures and there were no major health problems or birth defects among the CPM group. No increase was detected in the incidence of intrauterine growth retardation (IUGR) among CPM cases; however, postnatal growth was reduced compared with controls (p = 0.047). Development and behaviour in CPM cases was similar to that of controls. Conclusions The prenatal diagnosis of CPM is not associated with an increased risk of birth defects or developmental problems, but may be associated with decreased growth. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Approximately 40% of mammalian mRNA sequences contain AUG trinucleotides upstream of the main coding sequence, with a quarter of these AUGs demarcating open reading frames of 20 or more codons. In order to investigate whether these open reading frames may encode functional peptides, we have carried out a comparative genomic analysis of human and mouse mRNA 'untranslated regions' using sequences from the RefSeq mRNA sequence database. Results: We have identified over 200 upstream open reading frames which are strongly conserved between the human and mouse genomes. Consensus sequences associated with efficient initiation of translation are overrepresented at the AUG trinucleotides of these upstream open reading frames, while comparative analysis of their DNA and putative peptide sequences shows evidence of purifying selection. Conclusion: The occurrence of a large number of conserved upstream open reading frames, in association with features consistent with protein translation, strongly suggests evolutionary maintenance of the coding sequence and indicates probable functional expression of the peptides encoded within these upstream open reading frames.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Improvements in genomic technology, both in the increased speed and reduced cost of sequencing, have expanded the appreciation of the abundance of human genetic variation. However the sheer amount of variation, as well as the varying type and genomic content of variation, poses a challenge in understanding the clinical consequence of a single mutation. This work uses several methodologies to interpret the observed variation in the human genome, and presents novel strategies for the prediction of allele pathogenicity.

Using the zebrafish model system as an in vivo assay of allele function, we identified a novel driver of Bardet-Biedl Syndrome (BBS) in CEP76. A combination of targeted sequencing of 785 cilia-associated genes in a cohort of BBS patients and subsequent in vivo functional assays recapitulating the human phenotype gave strong evidence for the role of CEP76 mutations in the pathology of an affected family. This portion of the work demonstrated the necessity of functional testing in validating disease-associated mutations, and added to the catalogue of known BBS disease genes.

Further study into the role of copy-number variations (CNVs) in a cohort of BBS patients showed the significant contribution of CNVs to disease pathology. Using high-density array comparative genomic hybridization (aCGH) we were able to identify pathogenic CNVs as small as several hundred bp. Dissection of constituent gene and in vivo experiments investigating epistatic interactions between affected genes allowed for an appreciation of several paradigms by which CNVs can contribute to disease. This study revealed that the contribution of CNVs to disease in BBS patients is much higher than previously expected, and demonstrated the necessity of consideration of CNV contribution in future (and retrospective) investigations of human genetic disease.

Finally, we used a combination of comparative genomics and in vivo complementation assays to identify second-site compensatory modification of pathogenic alleles. These pathogenic alleles, which are found compensated in other species (termed compensated pathogenic deviations [CPDs]), represent a significant fraction (from 3 – 10%) of human disease-associated alleles. In silico pathogenicity prediction algorithms, a valuable method of allele prioritization, often misrepresent these alleles as benign, leading to omission of possibly informative variants in studies of human genetic disease. We created a mathematical model that was able to predict CPDs and putative compensatory sites, and functionally showed in vivo that second-site mutation can mitigate the pathogenicity of disease alleles. Additionally, we made publically available an in silico module for the prediction of CPDs and modifier sites.

These studies have advanced the ability to interpret the pathogenicity of multiple types of human variation, as well as made available tools for others to do so as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Arabidopsis root apical meristem (RAM) is a complex tissue capable of generating all the cell types that ultimately make up the root. The work presented in this thesis takes advantage of the versatility of high-throughput sequencing to address two independent questions about the root meristem. Although a lot of information is known regarding the cell fate decisions that occur at the RAM, cortex specification and differentiation remain poorly understood. In the first part of this thesis, I used an ethylmethanesulfonate (EMS) mutagenized marker line to perform a forward genetics screen. The goal of this screen was to identify novel genes involved in the specification and differentiation of the cortex tissue. Mapping analysis from the results obtained in this screen revealed a new allele of BRASSINOSTEROID4 with abnormal marker expression in the cortex tissue. Although this allele proved to be non-cortex specific, this project highlights new technology that allows mapping of EMS-generated mutations without the need to map-cross or back-cross. In the second part of this thesis, using fluorescence activated cell sorting (FACS) coupled with high throughput sequencing, my collaborators and I generated single-base resolution whole genome DNA methylomes, mRNA transcriptomes, and smallRNA transcriptomes for six different populations of cell types in the Arabidopsis root meristem. We were able to discover that the columella is hypermethylated in the CHH context within transposable elements. This hypermethylation is accompanied by upregulation of the RNA-dependent DNA methylation pathway (RdDM), including higher levels of 24-nt silencing RNAs (siRNAs). In summary, our studies demonstrate the versatility of high-throughput sequencing as a method for identifying single mutations or to perform complex comparative genomic analyses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Deletions of chromosome 1 have been described in 7% to 40% of cases of myeloma with inconsistent clinical consequences. CDKN2C at 1p32.3 has been identified in myeloma cell lines as the potential target of the deletion. We tested the clinical impact of 1p deletion and used high-resolution techniques to define the role of CDKN2C in primary patient material.Experimental Design: We analyzed 515 cases of monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and newly diagnosed multiple myeloma using fluorescence in situ hybridization (FISH) for deletions of CDKN2C. In 78 myeloma cases, we carried out Affymetrix single nucleotide polymorphism mapping and U133 Plus 2.0 expression arrays. In addition, we did mutation, methylation, and Western blotting analysis.Results: By FISH we identified deletion of 1p32.3 (CDKN2C) in 3 of 66 MGUS (4.5%), 4 of 39 SMM (10.3%), and 55 of 369 multiple myeloma cases (15%). We examined the impact of copy number change at CDKN2C on overall survival (OS), and found that the cases with either hemizygous or homozygous deletion of CDKN2C had a worse OS compared with cases that were intact at this region (22 months versus 38 months; P = 0.003). Using gene mapping we identified three homozygous deletions at 1p32.3, containing CDKN2C, all of which lacked expression of CDKN2C. Cases with homozygous deletions of CDKN2C were the most proliferative myelomas, defined by an expression-based proliferation index, consistent with its biological function as a cyclin-dependent kinase inhibitor.Conclusions: Our results suggest that deletions of CDKN2C are important in the progression and clinical outcome of myeloma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In March 2012, the authors met at the National Evolutionary Synthesis Center (NESCent) in Durham, North Carolina, USA, to discuss approaches and cooperative ventures in Indo-Pacific phylogeography. The group emerged with a series of findings: (1) Marine population structure is complex, but single locus mtDNA studies continue to provide powerful first assessment of phylogeographic patterns. (2) These patterns gain greater significance/power when resolved in a diversity of taxa. New analytical tools are emerging to address these analyses with multi-taxon approaches. (3) Genome-wide analyses are warranted if selection is indicated by surveys of standard markers. Such indicators can include discordance between genetic loci, or between genetic loci and morphology. Phylogeographic information provides a valuable context for studies of selection and adaptation. (4) Phylogeographic inferences are greatly enhanced by an understanding of the biology and ecology of study organisms. (5) Thorough, range-wide sampling of taxa is the foundation for robust phylogeographic inference. (6) Congruent geographic and taxonomic sampling by the Indo-Pacific community of scientists would facilitate better comparative analyses. The group concluded that at this stage of technology and software development, judicious rather than wholesale application of genomics appears to be the most robust course for marine phylogeographic studies. Therefore, our group intends to affirm the value of traditional (''unplugged'') approaches, such as those based on mtDNA sequencing and microsatellites, along with essential field studies, in an era with increasing emphasis on genomic approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ovarian cancer is a leading cause of gynaecological cancer-related morbidity and mortality. There has been increasing interest in the potential utility of anti-human epidermal growth factor receptor 2 (anti-HER2) agents in the treatment of this disease, with the attendant need to identify suitable predictive biomarkers of response to treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Determination of HER2 protein expression by immunohistochemistry (IHC) and genomic status by fluorescent in situ hybridisation (FISH) are important in identifying a subset of high HER2-expressing gastric cancers that might respond to trastuzumab. Although FISH is considered the standard for determination of HER2 genomic status, brightfield ISH is being increasingly recognised as a viable alternative. Also, the impact of HER2 protein expression/genomic heterogeneity on the accuracy of HER2 testing has not been well studied in the context of gastric biopsy samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)