922 resultados para Collagen Type III
Resumo:
INTRODUCTION: Photodynamic therapy with 5-aminolevulinic acid (5-ALA-PDT) exerts cell type specific effects on target cells. Since chondrocytes were found to be more resistant than osteoblasts to 5-ALA-PDT, the pre-treatment of osteochondral grafts with 5-ALA-PDT may represent a means to devitalize the osseous portion while maintaining functional cartilage. The present study was designed to determine the effects of 5-ALA-PDT in vitro on cell populations residing in skeletal tissues. METHODS: Osteoblasts, fibroblasts, bone marrow cells, and dendritic cells were incubated with 0.5 mM 5-ALA for 4 h. Protoporphyrin IX (PpIX) accumulation and after exposure to light cellular functions were assessed for up to 6 days. RESULTS: Accumulation of PpIX reached a plateau at 0.5 mM in osteoblasts, fibroblasts, and dendritic cells, and at 2.0 mM in bone marrow cells. At 0.5 mM 5-ALA, similar responses to illumination were observed in all cells with a survival rate of less than 12% at a light dose of 20 J/cm(2). The function of osteoblasts (proliferation, levels of mRNA encoding collagen type I, alkaline phosphatase activity) and fibroblasts (proliferation, levels of mRNAs encoding collagens type I and III) was not affected, when the cells were treated with 5-ALA and light doses of < or =10 J/cm(2). Paralleling the reduction of viable cells after 5-ALA-PDT, the capacity of dendritic cells to stimulate T cells in a mixed leukocyte reaction decreased to 4+/-2% at 20 J/cm(2). CONCLUSION: The investigated cell types were sensitive to 5-ALA-PDT and the residual cell debris did not elicit an allogenic response. These findings, together with the resistance of chondrocytes to 5-ALA-PDT, encourage the further investigation of this protocol in the pretreatment of osteochondral allografts.
Resumo:
BACKGROUND Cats are definitive hosts of Toxoplasma gondii and play an essential role in the epidemiology of this parasite. The study aims at clarifying whether cats are able to develop specific antibodies against different clonal types of T. gondii and to determine by serotyping the T. gondii clonal types prevailing in cats as intermediate hosts in Germany. METHODOLOGY To establish a peptide-microarray serotyping test, we identified 24 suitable peptides using serological T. gondii positive (n=21) and negative cat sera (n=52). To determine the clonal type-specific antibody response of cats in Germany, 86 field sera from T. gondii seropositive naturally infected cats were tested. In addition, we analyzed the antibody response in cats experimentally infected with non-canonical T. gondii types (n=7). FINDINGS Positive cat reference sera reacted predominantly with peptides harbouring amino acid sequences specific for the clonal T. gondii type the cats were infected with. When the array was applied to field sera from Germany, 98.8% (85/86) of naturally-infected cats recognized similar peptide patterns as T. gondii type II reference sera and showed the strongest reaction intensities with clonal type II-specific peptides. In addition, naturally infected cats recognized type II-specific peptides significantly more frequently than peptides of other type-specificities. Cats infected with non-canonical types showed the strongest reactivity with peptides presenting amino-acid sequences specific for both, type I and type III. CONCLUSIONS Cats are able to mount a clonal type-specific antibody response against T. gondii. Serotyping revealed for most seropositive field sera patterns resembling those observed after clonal type II-T. gondii infection. This finding is in accord with our previous results on the occurrence of T. gondii clonal types in oocysts shed by cats in Germany.
Resumo:
Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a 'ladder' pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from E. faecium, suggesting that EbpC(fm) is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that fms1 (ebpA(fm)), fms5 (ebpB(fm)) and ebpC(fm) are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse E. faecium isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen.
Resumo:
The hypothesis to be tested is that there are two distinct types of chronic responses in irradiated normal tissues, each resulting from damage to different cell populations in the tissue. The first is a sequala of chronic epithelial depletion in which the tissue's integrity cannot be maintained, i.e. a "consequential" chronic response. The other response is due to cell loss in the connective tissue and/or vascular stroma, i.e. a "primary" chronic response. The purpose of this study was to test the hypothesis in the murine colon by first, establishing a model of each chronic response and then, by determining whether the responses differed in timing of expression, histology, and expression of specific collagen types. The model of late damage used was colonic obstructions/strictures induced by a single dose of 27 Gy ("consequential" response) and two equal doses of 14.75 Gy (t = 10 days) ("primary" response). "Consequential" lesions appeared as early as 5 weeks after 27 Gy and were characterized by a deep mucosal ulceration and a thickened fibrotic serosa containing excessive accumulations of collagen types I and III. Both types were commingled in the scar at the base of the ulcer. Fibroblasts were synthesizing pro-collagen types I and III mRNA 10 weeks prior to measurable increases in collagen. A significant decrease in the ratio of collagen types I:III was associated with the "consequential" response at 4-5 months post-irradiation. The "primary" response, on the other hand, did not appear until 40 weeks after the split dose even though the total dose delivered was approximately the same as that for the "consequential" response. The "primary" response was characterized with an intact mucosa and a thickened fibrotic submucosa which contained excessive amounts of only collagen type I. An increased number of fibroblasts were synthesizing pro-collagen type I mRNA nearly 25 weeks before collagen type I levels were increased. The "primary" response lesion had a significantly elevated collagen type I:III ratio at 10-13 months post-irradiation. These data show a clear difference between the two chronic response and suggest that not all chronic responses share a common pathogenesis, but depend on the cell population in the tissue that is damaged. ^
Resumo:
Operationsziel Geschlossene, anatomische Reposition und sichere Fixation von problematischen suprakondylären Typ-III- und Typ-IV-Humerusfrakturen, die mit den herkömmlichen Operationsmethoden nur schwierig geschlossen zu behandeln sind. Indikationen Gemäß der AO-Kinderklassifikation der suprakondylären Humerusfrakturen vom Typ III und IV: Frakturen, welche nicht geschlossen mittels üblicher Repositionsmethoden reponierbar sind sowie Frakturen, die nicht mittels der üblichen, gekreuzten perkutanen Kirschner-Draht-Technik zu fixieren sind. Bei schweren Schwellungszuständen, offener Fraktur oder initial neurologischen und/oder vaskulären Problemen („pulseless pink hand“) sowie bei mehrfachverletzten Kindern, welche eine optimale Rehabilitation benötigen und die Extremität gipsfrei sein sollte. Bei Kindern mit Komorbiditäten (z. B. Anfälle, Spastizität), die eine bessere Stabilität benötigen. Kontraindikationen Prinzipiell keine Kontraindikationen Operationstechnik Im nichtreponierten Zustand unter Durchleuchtungskontrolle Einbringen einer einzelnen Schanz-Schraube in den lateralen (radialen) Aspekt des distalen Fragments, welches sich in der streng seitlichen Röntgenprojektion als „Sand-Uhr“- bzw. Kreisform des Capitulum humeri darstellt. Je nach Größe dieses distalen Fragments kann die Schanz-Schraube rein epiphysär oder metaphysär liegen. Danach in absolut streng seitlicher Projektion des distalen Humerus im Bereich des meta-diaphysären Übergangs Einbohren einer 2. Schanz-Schraube unabhängig von der Ersten, die möglichst rechtwinklig zur Längsachse des Humerus in der a.-p.-Ebene zu liegen kommen sollte, um spätere Manipulationen mittels „Joy-Stick“-Technik zu erleichtern. Sind die beiden Schanz-Schrauben mehr oder weniger in beiden Ebenen parallel, so ist die Fraktur praktisch anatomisch reponiert. Nach erreichter Reposition Feinjustierung aller Achskomponenten. Sicherung der Flexion/Extension mittels einem von radial, distal eingebrachten sog. Anti-Rotations-Kirschner-Drahts, der die Stabilität signifikant erhöht und eine Drehung des distalen Fragments um die einzelne Schanz-Schraube verhindert. Postoperative Behandlung Keine zusätzliche Gipsruhigstellung notwendig. Es sollte eine funktionelle Nachbehandlung erfolgen. Ergebnisse Gemäß unserer Langzeitstudien bewegen die meisten Kinder bereits zum Zeitpunkt der ambulanten Pin-Entfernung in der Frakturambulanz ihren Ellbogen weitgehend normal. Bei einer Follow-up-Zeit über 40 Monate hatten 30/31 Kindern eine seitengleiche Achse und Beweglichkeit.
Resumo:
PURPOSE Dynamic intraligamentary stabilization was recently proposed as an option for the treatment of acute ACL ruptures. The aim of this study was to investigate the feasibility of the procedure in mid-substance ACL ruptures and examine whether the additional application of a bilayer collagen I/III membrane would provide for a superior outcome. METHODS The study group consisted of patients presenting with a mid-substance ACL rupture undergoing dynamic intraligamentary stabilization using the Ligamys™ device along with application of a collagen I/III membrane to the surface of the ACL (group A, n = 23). The control group comprised a matched series of patients presenting with a mid-substance ACL rupture also treated by dynamic intraligamentary stabilization Ligamys™ repair, however, without additional collagen application (group B, n = 33). Patients were evaluated preoperatively and at 24-month follow-up for stability as well as Tegner and Lysholm scores. Knee laxity was measured as a difference in anterior translation (ΔAP) and pivot shift. Any events occurring during the follow-up period of 24 months were documented. Logistic regression of complications was performed, and adjustment undertaken where necessary. RESULTS A high total complication rate of 78.8 % was noted in group B, compared to group A (8.7 %) (p = 0.002). The addition of a collagen membrane was the only independent prognostic factor associated with reduced complications (OR 8.0, CI 2.0-32.2, p = 0.003, for collagen-free treatment). In group B, 6 patients suffered a re-rupture with subsequent instability requiring secondary hamstring reconstruction surgery, and 11 developed extension loss requiring arthroscopic debridement, whilst in group A, 2 patients required arthroscopic debridement for loss of exension, with no further encountered complication. Median Lysholm score was significantly higher in group A compared to group B (median 100 range 93-100 vs median 95 range 60-100, p = 0.03) at final follow-up. CONCLUSIONS A high complication rate following ACL Ligamys™ repair of mid-substance ruptures was noted. Application of a collagen membrane to the surface of the ACL resulted in a reduced incidence of extension deficit and re-ruptures. The results indicate that solitary ACL Ligamys™ repair does not present an appropriate treatment modality for mid-substance ACL ruptures. Collage application proved to provide healing benefits with superior clinical outcome after ACL repair. LEVEL OF EVIDENCE Case control study, Level III.
Resumo:
Although bone morphogenetic proteins (BMPs) were initially identified for their potent bone-inducing activity, their precise roles in processes of endochondral and intramembranous bone formation are far from being clear. Tissue-specific loss-of-function experiments using the BMP receptor type IA (BMPR-IA) are particularly attractive since this receptor is thought to be essential for signaling by the closely related BMPs -2, 4, and 7. To ablate signaling through this receptor during chondrogenesis, we have generated transgenic mice expressing Cre recombinase under the control of the collagen type II (Col2a1) gene regulatory sequences. Mice lacking BMPR-IA function in chondrocytes display a number of skeletal abnormalities, including defects in bones of the chondrocranium, abnormal dorsal vertebral processes, scapulae with severe hypoplasia of dorsal elements, and shortening of the long bones. Alterations in the growth plate of long bones in mutants suggest that BMPR-IA is not required for early steps of the chondrocyte specification, but is rather important in regulation of terminal differentiation. Molecular analysis revealed noticeable downregulation of the Ihh/Ptch signalling pathway, decreased chondrocyte proliferation rate and deregulation of hypertrophy. ^ In order to elucidate the role of BMP signalling in development of the limb and intramembranous ossification, we have used mice expressing Cre recombinase under control of the Prx1 (MHox) regulatory elements (M. Logan, pers comm.). Cre activity was found in those mice in the developing limb bud mesenchyme, as well as in a subset of cranial neural crest cells. Prx1-Cre-induced conditional mutants display prominent defects in distal limb outgrowth, as well as ossification defects in a number of neural crest-derived calvarial bones. Intriguingly, mutant limbs displayed alterations in patterning along all three axes. Molecular analysis revealed ectopic anterior Shh/Ptch signalling pathway activation and expression of some Hox genes. Observed loss of Msx1 and Msx2 expression in the progress zone correlates with downregulation of Cyclin D1 and decreased distal outgrowth. Abnormal ventral localization of Lmx1b-expressing cells along with observed later morphological abnormalities suggest a novel role for BMP signalling in establishment or maintaining of the dorso-ventral polarity in the limb mesoderm. ^
Resumo:
The lecticans are a family of chondroitin sulfate proteoglycans including aggrecan, versican, neurocan, and brevican. The C-terminal globular domains of lecticans are structurally related to selectins, consisting of a C-type lectin domain flanked by epidermal growth factor and complement regulatory protein domains. The C-type lectin domain of versican has been shown to bind tenascin-R, an extracellular matrix protein specifically expressed in the nervous system, and the interaction was presumed to be mediated by a carbohydrate–protein interaction. In this paper, we show that the C-type lectin domain of brevican, another lectican that is specifically expressed in the nervous system, also binds tenascin-R. Surprisingly, this interaction is mediated by a protein–protein interaction through the fibronectin type III domains 3–5 of tenascin-R, independent of any carbohydrates or sulfated amino acids. The lectin domains of versican and other lecticans also bind the same domain of tenascin-R by protein–protein interactions. Surface plasmon resonance analysis revealed that brevican lectin has at least a 10-fold higher affinity than the other lectican lectins. Tenascin-R is coprecipitated with brevican from adult rat brain extracts, suggesting that tenascin-R and brevican form complexes in vivo. These results demonstrate that the C-type lectin domain can interact with fibronectin type III domains through protein–protein interactions, and suggest that brevican is a physiological tenascin-R ligand in the adult brain.
Resumo:
Tissue remodeling often reflects alterations in local mechanical conditions and manifests as an integrated response among the different cell types that share, and thus cooperatively manage, an extracellular matrix. Here we examine how two different cell types, one that undergoes the stress and the other that primarily remodels the matrix, might communicate a mechanical stress by using airway cells as a representative in vitro system. Normal stress is imposed on bronchial epithelial cells in the presence of unstimulated lung fibroblasts. We show that (i) mechanical stress can be communicated from stressed to unstressed cells to elicit a remodeling response, and (ii) the integrated response of two cell types to mechanical stress mimics key features of airway remodeling seen in asthma: namely, an increase in production of fibronectin, collagen types III and V, and matrix metalloproteinase type 9 (MMP-9) (relative to tissue inhibitor of metalloproteinase-1, TIMP-1). These observations provide a paradigm to use in understanding the management of mechanical forces on the tissue level.
Resumo:
The same heterozygous T -> C transition at nt 8567 of the von Willebrand factor (vWF) transcript was found in two unrelated patients with type III) von Willebrand disease, with no other apparent abnormality. In one family, both alleles were normal in the parents and one sister; thus, the mutation originated de novo in the proposita. The second patient also had asymptomatic parents who, however, were not available for study. The structural consequences of the identified mutation, resulting in the CyS2010 -> Arg substitution, were evaluated by expression of the vWF carboxyl-terminal domain containing residues 1366-2050. Insect cells infected with recombinant baculovirus expressing normal vWF sequence secreted a disulfide linked dimeric molecule with an apparent molecular mass of 150 kDa before reduction, yielding a single band of 80 kDa after disulfide bond reduction. In contrast, cells expressing the mutant fragment secreted a monomeric molecule of apparent molecular mass of 80 kDa, which remained unchanged after reduction. We conclude that CyS2010 is essential for normal dimerization of vWF subunits through disulfide bonding of carboxyl-terminal domains and that a heterozygous mutation in the corresponding codon is responsible for defective multimer formation in type III) von Willebrand disease.
Resumo:
O nicho endosteal da medula óssea abriga as células-tronco hemopoéticas (CTH) em quiescência/autorrenovação. As CTH podem ser classificadas em dois grupos: células que reconstituem a hemopoese em longo prazo (LT-CTH) e curto prazo (CT-CTH). Investigamos, neste trabalho, os efeitos da desnutrição proteica (DP) no tecido ósseo e a participação do nicho endosteal na sinalização osteoblasto-CTH. Para tanto, utilizamos camundongos submetidos à DP induzida pelo consumo de ração hipoproteica. Os animais desnutridos apresentaram pancitopenia e diminuição nas concentrações de proteínas séricas e albumina. Quantificamos as CTH por citometria de fluxo e verificamos que os desnutridos apresentaram menor porcentagem de LT-CTH, CT-CTH e de progenitores multipotentes (PMP). Avaliamos a expressão das proteínas CD44, CXCR4, Tie-2 e Notch-1 nas LT-CTH. Observamos diminuição da expressão da proteína CD44 nos desnutridos. Isolamos as células LT-CTH por cell sorting e avaliamos a expressão gênica de CD44, CXCR4 e NOTCH-1. Verificamos que os desnutridos apresentaram menor expressão de CD44. Em relação ao ciclo celular, verificamos maior quantidade de LT-CTH nas fases G0/G1. Caracterizamos as alterações do tecido ósseo femoral, in vivo. Observamos diminuição da densidade mineral óssea e da densidade medular nos desnutridos. A desnutrição acarretou diminuição da área média das seções transversais, do perímetro do periósteo e do endósteo na cortical do fêmur dos animais. E na região trabecular, verificou-se diminuição da razão entre volume ósseo e volume da amostra e do número de trabéculas, aumento da distância entre as trabéculas e prevalência de trabéculas ósseas em formato cilíndrico. Avaliamos a expressão de colágeno, osteonectina (ON) e osteocalcina (OC) por imuno-histoquímica, e de osteopontina (OPN) por imunofluorescência no fêmur e verificamos diminuição da marcação para OPN, colágeno tipo I, OC e ON nos desnutridos. Evidenciamos, pela técnica do Picrosírius, desorganização na distribuição das fibras colágenas e presença de fibras tipo III nos fêmures dos desnutridos, além de maior número de osteoclastos evidenciados pela reação da fosfatase ácida tartarato resistente. Os osteoblastos da região femoral foram isolados por depleção imunomagnética, imunofenotipados por citometria de fluxo e cultivados em meio de indução osteogênica. Observamos menor positividade para fosfatase alcalina e vermelho de alizarina nas culturas dos osteoblastos dos desnutridos. Avaliamos, por Western Blotting, a expressão de colágeno tipo I, OPN, osterix, Runx2, RANKL e osteoprotegerina (OPG), e, por PCR em tempo real, a expressão de COL1A2, SP7, CXCL12, ANGPT1, SPP1, JAG2 e CDH2 nos osteoblastos isolados. Verificamos que a desnutrição acarretou diminuição da expressão proteica de osterix e OPG e menor expressão gênica de ANGPT1. Avaliamos a proliferação das células LSK (Lin-Sca1+c-Kit+) utilizando ensaio de CFSE (carboxifluoresceína succinimidil ester). Foi realizada cocultura de células LSK e osteoblastos (MC3T3-E1) na presença e ausência de anti-CD44. Após uma semana, verificamos menor proliferação das LSK dos desnutridos. O bloqueio de CD44 das LSK do grupo controle diminuiu a proliferação destas em três gerações. Entretanto, nos desnutridos, esse bloqueio não afetou a proliferação. Concluímos que a DP promoveu alterações no tecido ósseo e nas CTH. Entretanto, não podemos afirmar que as alterações observadas no sistema hemopoético foram decorrentes de alterações exclusivas do nicho endosteal.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Adipose tissue forms when basement membrane extract ( Matrigel (TM)) and fibroblast growth factor-2 (FGF-2) are added to our mouse tissue engineering chamber model. A mouse tumor extract, Matrigel is unsuitable for human clinical application, and finding an alternative to Matrigel is essential. In this study we generated adipose tissue in the chamber model without using Matrigel by controlled release of FGF-2 in a type I collagen matrix. FGF-2 was impregnated into biodegradable gelatin microspheres for its slow release. The chambers were filled with these microspheres suspended in 60 mu L collagen gel. Injection of collagen containing free FGF-2 or collagen containing gelatin microspheres with buffer alone served as controls. When chambers were harvested 6 weeks after implantation, the volume and weight of the tissue obtained were higher in the group that received collagen and FGF-2 impregnated microspheres than in controls. Histologic analysis of tissue constructs showed the formation of de novo adipose tissue accompanied by angiogenesis. In contrast, control groups did not show extensive adipose tissue formation. In conclusion, this study has shown that de novo formation of adipose tissue can be achieved through controlled release of FGF-2 in collagen type I in the absence of Matrigel.
Resumo:
Introduction: The vasoconstricting peptide Endothelin-1 (ET-1) has been associated with atherosclerotic cardiovascular disease, AAA, hypertension and hypercholesterolemia. It is known to stimulate quiescent vascular smooth muscle cells (VSMC) into the growth cycle and has been linked to intimal thickening following endothelial injury and is associated with vessel wall remodelling in salt-sensitive hypertension models. Enhanced ET-1 expression has been reported in the internal mammary artery (IMA) and was markedly higher in patients undergoing cardiac bypass surgery who were diabetic and /or hypercholesterolemic. Aims: To firstly review the histopathology of the IMA and secondly, determine the relationship between ET-1 expression in this vessel and mitogenic activity in the medial VSMC. Methods: Vessel tissue collected at the time of CABG surgery was formalin-fixed and paraffin-embedded for histological investigation. Cross sections of the left distal IMAwere stained with Alcian Blue/Verhoeff’s van Gieson to assess medial degeneration and identify the elastic lamellae and picrosirius red to determine the collagen content (specifically type I and type III). Immunohistochemistry staining was used to assess VSMC growth (PCNA label), tissue ET-1 expression, VSMC (SMCa-actin) area and macrophage/monocyte (anti-CD68) infiltration. Quantitative analysis was performed to measure the VSMC area in relation to ET-1 staining. Results: Fifty-five IMA specimens from the CABG patients (10F; 45M; mean age 65 years) were collected for this study. Fourteen donor IMAspecimens were used as controls (7F; 7M; mean age 45 years). Significant medial hypertrophy, VSMC disorganisation and elastic lamellae destruction was detected in the CABG IMA. The amount of Alcian blue staining in the CABG IMA was almost double that of the control (31.85+/14.52% Vs 17.10+/9.96%, P= .0006). Total collagen and type I collagen content was significantly increased compared with controls (65.8+/18.3% Vs 33.7 + / 13.7%, P= .07), (14.2 + /10.0% Vs 4.8 + /2.8%, P= .01), respectively. Tissue ET-1 and PCNA labelling were also significantly elevated the CABG IMA specimens relative to the controls (69.99 + /18.74%Vs 23.33 + /20.53%, P= .0001, and 37.29 + /12.88% Vs 11.06 + /8.18, P= .0001), respectively. There was mild presence of macrophages and monocytes in both CABG and control tissue. Conclusions: The IMA from CABG patients has elevated levels of type I collagen in the extracellular matrix indicative of fibrosis and was coupled with deleterious structural remodelling. Abnormally high levels of ET-1 were measured in the medial SMC layer and was associated with VSMC growth but not related to any chronic inflammatory response within the vessel wall.
Resumo:
Collagen, type I, is a highly abundant natural protein material which has been cross-linked by a variety of methods including chemical agents, physical heating and UV irradiation with the aim of enhancing its physical characteristics such as mechanical strength, thermal stability, resistance to proteolytic breakdown, thus increasing its overall biocompatibility. However, in view of the toxicity of residual cross-linking agents, or impracticability at large scales, it would be more useful if the collagen could be cross-linked by a milder, efficient and more practical means by using enzymes as biological catalysts. We demonstrate that on treating native collagen type I (from bovine skin) with both tissue transglutaminase (TG2; tTG) and microbial transglutaminase (mTG; Streptoverticillium mobaraense) leads to an enhancement in cell attachment, spreading and proliferation of human osteoblasts (HOB) and human foreskin dermal fibroblasts (HFDF) when compared to culture on native collagen. The transglutaminase-treated collagen substrates also showed a greater resistance to cell-mediated endogenous protease degradation than the native collagen. In addition, the HOB cells were shown to differentiate at a faster rate than on native collagen when assessed by measurement of alkaline phosphatase activity and osteopontin expression. © 2005 Elsevier Ltd. All rights reserved.