958 resultados para Coaxial cavities
Resumo:
An optical quantum memory scheme using two narrow-linewidth cavities and some optical fibers is proposed. The cavities are connected via an optical fiber, and the gap of each cavity can be adjusted to allow photons with a certain bandwidth to transmit through or reflect back. Hence, each cavity acts as a shutter and the photons can be stored in the optical fiber between the cavities at will. We investigate the feasibility of using this device in storing a single photon. We estimate that with current technology storage of a photon qubit for up to 50 clock cycles (round trips) could be achieved with a probability of success of 85%. We discuss how this figure could be improved.
Resumo:
Supercontinuum generation in a TrueWave and SMF fibre based ultra-long Raman fibre laser cavity is investigated experimentally. By including SMF in the ultra-long Raman cavity, bandwidth and flatness can be dramatically improved.
Resumo:
We study the effect of fibre base and grating profile on the efficiency of ultra-long Raman lasers. We show that for the studied parameters, FBG profile does not affect the performance when operating away from the zero-dispersion wavelength.
Resumo:
Supercontinuum generation in a multi-fiber ultra-long Raman fiber laser cavity is experimentally investigated for the first time. We demonstrate significantly enhanced spectral flatness and supercontinuum generation efficiency using only conventional single mode silica fiber. With a pump power of only 1.63W a ~15dB bandwidth >260 nm wide (from 1440 to >1700nm) supercontinuum source is reported with a flatness of <1dB over 180nm using an optimised hybrid TW/HNLF cavity. We address the dependence of the supercontinuum spectrum on the input pump power and ultra-long Raman cavity.
Resumo:
We present a study on the potential use of ultra-longlasercavities for unrepeateredfiber communication, based on the theory of nonlinearity management. A comparison is offered between the performance of ultra-longlasers and standard bi-directional distributed amplification schemes in nonrepeated transmission. Links based on both traditional (SMF/DCF) and modern Ultrawave transmissionfibers are considered.
Resumo:
Performance optimization of ultra-long Raman laser links is studied theoretically and experimentally. We demonstrate that it is possible to reduce the signal power excursion by adjusting FBG reflectivity without compromising pump efficiency. Furthermore, we experimentally demonstrate an OSNR improvement of 4.3 dB in our system after 4000 km transmission by switching from conventional erbium-doped fibre amplifiers to quasi-lossless transmission.
Resumo:
We propose a systematic method for the synthesis of arbitrary group delay responses by using all-pass structures of coupled optical cavities. Optimum structure parameters design, in terms of filter order and accuracy, are obtained.
Resumo:
Regions containing internal boundaries such as composite materials arise in many applications.We consider a situation of a layered domain in IR3 containing a nite number of bounded cavities. The model is stationary heat transfer given by the Laplace equation with piecewise constant conductivity. The heat ux (a Neumann condition) is imposed on the bottom of the layered region and various boundary conditions are imposed on the cavities. The usual transmission (interface) conditions are satised at the interface layer, that is continuity of the solution and its normal derivative. To eciently calculate the stationary temperature eld in the semi-innite region, we employ a Green's matrix technique and reduce the problem to boundary integral equations (weakly singular) over the bounded surfaces of the cavities. For the numerical solution of these integral equations, we use Wienert's approach [20]. Assuming that each cavity is homeomorphic with the unit sphere, a fully discrete projection method with super-algebraic convergence order is proposed. A proof of an error estimate for the approximation is given as well. Numerical examples are presented that further highlights the eciency and accuracy of the proposed method.
Resumo:
We propose a systematic method for the synthesis of arbitrary group delay responses by using allpass structures of coupled optical cavities. Optimum structure parameters design, in terms of filter order and accuracy, are obtained. © 2012 OSA.
Resumo:
We study the effect of fibre base and grating profile on the efficiency of ultra-long Raman lasers. We show that for the studied parameters, FBG profile does not affect the performance when operating away from the zero-dispersion wavelength.