744 resultados para Cloud Computing, attori, piattaforme, Pattern, Orleans


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mobile cloud computing paradigm can offer relevant and useful services to the users of smart mobile devices. Such public services already exist on the web and in cloud deployments, by implementing common web service standards. However, these services are described by mark-up languages, such as XML, that cannot be comprehended by non-specialists. Furthermore, the lack of common interfaces for related services makes discovery and consumption difficult for both users and software. The problem of service description, discovery, and consumption for the mobile cloud must be addressed to allow users to benefit from these services on mobile devices. This paper introduces our work on a mobile cloud service discovery solution, which is utilised by our mobile cloud middleware, Context Aware Mobile Cloud Services (CAMCS). The aim of our approach is to remove complex mark-up languages from the description and discovery process. By means of the Cloud Personal Assistant (CPA) assigned to each user of CAMCS, relevant mobile cloud services can be discovered and consumed easily by the end user from the mobile device. We present the discovery process, the architecture of our own service registry, and service description structure. CAMCS allows services to be used from the mobile device through a user's CPA, by means of user defined tasks. We present the task model of the CPA enabled by our solution, including automatic tasks, which can perform work for the user without an explicit request.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paper presented at the Cloud Forward Conference 2015, October 6th-8th, Pisa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasingly infrastructure providers are supplying the cloud marketplace with storage and on-demand compute resources to host cloud applications. From an application user's point of view, it is desirable to identify the most appropriate set of available resources on which to execute an application. Resource choice can be complex and may involve comparing available hardware specifications, operating systems, value-added services, such as network configuration or data replication, and operating costs, such as hosting cost and data throughput. Providers' cost models often change and new commodity cost models, such as spot pricing, have been introduced to offer significant savings. In this paper, a software abstraction layer is used to discover infrastructure resources for a particular application, across multiple providers, by using a two-phase constraints-based approach. In the first phase, a set of possible infrastructure resources are identified for a given application. In the second phase, a heuristic is used to select the most appropriate resources from the initial set. For some applications a cost-based heuristic is most appropriate; for others a performance-based heuristic may be used. A financial services application and a high performance computing application are used to illustrate the execution of the proposed resource discovery mechanism. The experimental result shows the proposed model could dynamically select an appropriate set of resouces that match the application's requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scheduling problem in distributed data-intensive computing environments has become an active research topic due to the tremendous growth in grid and cloud computing environments. As an innovative distributed intelligent paradigm, swarm intelligence provides a novel approach to solving these potentially intractable problems. In this paper, we formulate the scheduling problem for work-flow applications with security constraints in distributed data-intensive computing environments and present a novel security constraint model. Several meta-heuristic adaptations to the particle swarm optimization algorithm are introduced to deal with the formulation of efficient schedules. A variable neighborhood particle swarm optimization algorithm is compared with a multi-start particle swarm optimization and multi-start genetic algorithm. Experimental results illustrate that population based meta-heuristics approaches usually provide a good balance between global exploration and local exploitation and their feasibility and effectiveness for scheduling work-flow applications. © 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in hardware development coupled with the rapid adoption and broad applicability of cloud computing have introduced widespread heterogeneity in data centers, significantly complicating the management of cloud applications and data center resources. This paper presents the CACTOS approach to cloud infrastructure automation and optimization, which addresses heterogeneity through a combination of in-depth analysis of application behavior with insights from commercial cloud providers. The aim of the approach is threefold: to model applications and data center resources, to simulate applications and resources for planning and operation, and to optimize application deployment and resource use in an autonomic manner. The approach is based on case studies from the areas of business analytics, enterprise applications, and scientific computing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud data centres are critical business infrastructures and the fastest growing service providers. Detecting anomalies in Cloud data centre operation is vital. Given the vast complexity of the data centre system software stack, applications and workloads, anomaly detection is a challenging endeavour. Current tools for detecting anomalies often use machine learning techniques, application instance behaviours or system metrics distribu- tion, which are complex to implement in Cloud computing environments as they require training, access to application-level data and complex processing. This paper presents LADT, a lightweight anomaly detection tool for Cloud data centres that uses rigorous correlation of system metrics, implemented by an efficient corre- lation algorithm without need for training or complex infrastructure set up. LADT is based on the hypothesis that, in an anomaly-free system, metrics from data centre host nodes and virtual machines (VMs) are strongly correlated. An anomaly is detected whenever correlation drops below a threshold value. We demonstrate and evaluate LADT using a Cloud environment, where it shows that the hosting node I/O operations per second (IOPS) are strongly correlated with the aggregated virtual machine IOPS, but this correlation vanishes when an application stresses the disk, indicating a node-level anomaly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Demand Side Management (DSM) plays an important role in Smart Grid. It has large scale access points, massive users, heterogeneous infrastructure and dispersive participants. Moreover, cloud computing which is a service model is characterized by resource on-demand, high reliability and large scale integration and so on and the game theory is a useful tool to the dynamic economic phenomena. In this study, a scheme design of cloud + end technology is proposed to solve technical and economic problems of the DSM. The architecture of cloud + end is designed to solve technical problems in the DSM. In particular, a construct model of cloud + end is presented to solve economic problems in the DSM based on game theories. The proposed method is tested on a DSM cloud + end public service system construction in a city of southern China. The results demonstrate the feasibility of these integrated solutions which can provide a reference for the popularization and application of the DSM in china.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How can applications be deployed on the cloud to achieve maximum performance? This question has become significant and challenging with the availability of a wide variety of Virtual Machines (VMs) with different performance capabilities in the cloud. The above question is addressed by proposing a six step benchmarking methodology in which a user provides a set of four weights that indicate how important each of the following groups: memory, processor, computation and storage are to the application that needs to be executed on the cloud. The weights along with cloud benchmarking data are used to generate a ranking of VMs that can maximise performance of the application. The rankings are validated through an empirical analysis using two case study applications, the first is a financial risk application and the second is a molecular dynamics simulation, which are both representative of workloads that can benefit from execution on the cloud. Both case studies validate the feasibility of the methodology and highlight that maximum performance can be achieved on the cloud by selecting the top ranked VMs produced by the methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bag of Distributed Tasks (BoDT) can benefit from decentralised execution on the Cloud. However, there is a trade-off between the performance that can be achieved by employing a large number of Cloud VMs for the tasks and the monetary constraints that are often placed by a user. The research reported in this paper is motivated towards investigating this trade-off so that an optimal plan for deploying BoDT applications on the cloud can be generated. A heuristic algorithm, which considers the user's preference of performance and cost is proposed and implemented. The feasibility of the algorithm is demonstrated by generating execution plans for a sample application. The key result is that the algorithm generates optimal execution plans for the application over 91% of the time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When orchestrating Web service workflows, the geographical placement of the orchestration engine (s) can greatly affect workflow performance. Data may have to be transferred across long geographical distances, which in turn increases execution time and degrades the overall performance of a workflow. In this paper, we present a framework that, given a DAG-based workflow specification, computes the optimal Amazon EC2 cloud regions to deploy the orchestration engines and execute a workflow. The framework incorporates a constraint model that solves the workflow deployment problem, which is generated using an automated constraint modelling system. The feasibility of the framework is evaluated by executing different sample workflows representative of scientific workloads. The experimental results indicate that the framework reduces the workflow execution time and provides a speed up of 1.3x-2.5x over centralised approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud data centres are implemented as large-scale clusters with demanding requirements for service performance, availability and cost of operation. As a result of scale and complexity, data centres typically exhibit large numbers of system anomalies resulting from operator error, resource over/under provisioning, hardware or software failures and security issus anomalies are inherently difficult to identify and resolve promptly via human inspection. Therefore, it is vital in a cloud system to have automatic system monitoring that detects potential anomalies and identifies their source. In this paper we present a lightweight anomaly detection tool for Cloud data centres which combines extended log analysis and rigorous correlation of system metrics, implemented by an efficient correlation algorithm which does not require training or complex infrastructure set up. The LADT algorithm is based on the premise that there is a strong correlation between node level and VM level metrics in a cloud system. This correlation will drop significantly in the event of any performance anomaly at the node-level and a continuous drop in the correlation can indicate the presence of a true anomaly in the node. The log analysis of LADT assists in determining whether the correlation drop could be caused by naturally occurring cloud management activity such as VM migration, creation, suspension, termination or resizing. In this way, any potential anomaly alerts are reasoned about to prevent false positives that could be caused by the cloud operator’s activity. We demonstrate LADT with log analysis in a Cloud environment to show how the log analysis is combined with the correlation of systems metrics to achieve accurate anomaly detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The broad capabilities of current mobile devices have paved the way for Mobile Crowd Sensing (MCS) applications. The success of this emerging paradigm strongly depends on the quality of received data which, in turn, is contingent to mass user participation; the broader the participation, the more useful these systems become. However, there is an ongoing trend that tries to integrate MCS applications with emerging computing paradigms such as cloud computing. The intuition is that such a transition can significantly improve the overall efficiency while at the same time it offers stronger security and privacy-preserving mechanisms for the end-user. In this position paper, we dwell on the underpinnings of incorporating cloud computing techniques to facilitate the vast amount of data collected in MCS applications. That is, we present a list of core system, security and privacy requirements that must be met if such a transition is to be successful. To this end, we first address several competing challenges not previously considered in the literature such as the scarce energy resources of battery-powered mobile devices as well as their limited computational resources that they often prevent the use of computationally heavy cryptographic operations and thus offering limited security services to the end-user. Finally, we present a use case scenario as a comprehensive example. Based on our findings, we posit open issues and challenges, and discuss possible ways to address them, so that security and privacy do not hinder the migration of MCS systems to the cloud.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Informática e de Computadores