885 resultados para Clinical stages of infection
Resumo:
This research investigates users' anticipation of their future experiences with interactive products to support design for experience in the early stages of product development. This research generates new knowledge of anticipated user experience (AUX), which reveals users' tendency to perceive the pragmatic quality of products as the main determinant of their positive future experiences. The AUX Framework has been an important outcome of this study. The exploration of the components of this framework allows a better prediction and understanding of users' underlying needs and potential usage contexts valuable for the early design phases.
Resumo:
Background A goal of the postgraduate clinical pharmacy programme (PGCPP) at the University of Queensland is to enhance clinical practice. Aims To evaluate student perceptions of the impact of the PGCPP on practice and the inclusion of a competency-based performance evaluation as a formative component of the curriculum. Method In 2010, students completed a questionnaire to evaluate the impact of the PGCPP. In 2011, formative competency-based performance evaluations were conducted as a component of the course and the questionnaire was repeated. Responses, competency ratings and evaluation feedback were collated. Data were analysed using descriptive statistics. Results 51/57 (89%) of students completed the questionnaire in 2010 and 2011. Over 90% of students agreed or strongly agreed that the PGCPP enhanced practice, knowledge, confidence and contribution to patient care. Responses were similarly positive after the inclusion of the performance evaluation. Conclusion This study demonstrated that the PGCPP is achieving the goal of enhancing the practice of pharmacists.
Resumo:
Chlamydia trachomatis is the most common sexually transmitted bacterial infection worldwide. The impact of this pathogen on human reproduction has intensified research efforts to better understand chlamydial infection and pathogenesis. Whilst there are animal models available that mimic the many aspects of human chlamydial infection, the mouse is regarded as the most practical and widely used of the models. Studies in mice have greatly contributed to our understanding of the host-pathogen interaction and provided an excellent medium for evaluating vaccines. Here we explore the advantages and disadvantages of all animal models of chlamydial genital tract infection, with a focus on the murine model and what we have learnt from it so far.
Resumo:
Cancers of the brain and central nervous system account for 1.6% of new cancers and 1.8% of cancer deaths globally. The highest rates of all developed nations are observed in Australia and New Zealand. There are known complexities associated with dose measurement of very small radiation fields. Here, 3D dosimetric verification of treatments for small intracranial tumours using gel dosimetry was investigated.
Resumo:
With measurement of physical activity becoming more common in clinical practice, it is imperative that healthcare professionals become more knowledgeable about the different methods available to objectively measure physical activity behaviour. Objective measures do not rely on information provided by the patient, but instead measure and record the biomechanical or physiological consequences of performing physical activity, often in real time. As such, objective measures are not subject to the reporting bias or recall problems associated with self-report methods. The purpose of this article was to provide an overview of the different methods used to objectively measure physical activity in clinical practice. The review was delimited to heart rate monitoring, accelerometers and pedometers since their small size, low participant burden and relatively low cost make these objective measures appropriate for use in clinical practice settings. For each measure, strengths and weakness were discussed; and whenever possible, literature-based examples of implementation were provided.
Resumo:
Artemisinin (ART) based combination therapy (ACT) is used as the first line treatment of uncomplicated falciparum malaria worldwide. However, despite high potency and rapid action there is a high rate of recrudescence associated with ART monotherapy or ACT long before the recent emergence of ART resistance. ART induced ring stage dormancy and recovery has been implicated as possible cause of recrudescence; however, little is known about the characteristics of dormant parasites including whether dormant parasites are metabolically active. We investigated the transcription of 12 genes encoding key enzymes in various metabolic pathways in P. falciparum during dihydroartemisinin (DHA) induced dormancy and recovery. Transcription analysis showed an immediate down regulation for 10 genes following exposure to DHA, but continued transcription of 2 genes encoding apicoplast and mitochondrial proteins. Transcription of several additional genes encoding apicoplast and mitochondrial proteins, particularly genes encoding enzymes in pyruvate metabolism and fatty acid synthesis pathways, were also maintained. Additions of inhibitors for biotin acetyl CoA carbozylase and enoyl-acyl carrier reductase of the fatty acid synthesis pathways delayed the recovery of dormant parasites by 6 and 4 days, respectively following DHA treatment. Our results demonstrate most metabolic pathways are down regulated in DHA induced dormant parasites. In contrast fatty acid and pyruvate metabolic pathways remain active. These findings highlight new targets to interrupt recovery of parasites from ART-induced dormancy and to reduce the rate of recrudescence following ART treatment.
Resumo:
Self-assembly of highly stoichiometric SiC quantum dots still remains a major challenge for the gas/plasma-based nanodot synthesis. By means of a multiscale hybrid numerical simulation of the initial stage (0.1-2.5 s into the process) of deposition of SiCSi (100) quantum dot nuclei, it is shown that equal Si and kst atom deposition fluxes result in strong nonstoichiometric nanodot composition due to very different surface fluxes of Si and C adatoms to the quantum dots. At this stage, the surface fluxes of Si and C adatoms to SiC nanodots can be effectively controlled by manipulating the SiC atom influx ratio and the Si (100) surface temperature. It is demonstrated that at a surface temperature of 800 K the surface fluxes can be equalized after only 0.05 s into the process; however, it takes more then 1 s at a surface temperature of 600 K. Based on the results of this study, effective strategies to maintain a stoichiometric ([Si] [C] =1:1) elemental ratio during the initial stages of deposition of SiCSi (100) quantum dot nuclei in a neutral/ionized gas-based process are proposed.
Resumo:
Introduction The multifactorial nature of clinical skills development makes assessment of undergraduate radiation therapist competence level by clinical mentors challenging. A recent overhaul of the clinical assessment strategy at Queensland University of Technology has moved away from the high-stakes Observed Structured Clinical Examination (OSCE) to encompass a more continuous measure of competence. This quantitative study aimed to gather stakeholder evidence to inform development of standards by which to measure student competence for a range of levels of progression. Methods A simple anonymous questionnaire was distributed to all Queensland radiation therapists. The tool asked respondents to assign different levels of competency with a range of clinical tasks to different levels of student. All data were anonymous and was combined for analysis using Microsoft Excel. Results Feedback indicated good agreement with tasks that specified amount of direction required and this has been incorporated into the new clinical achievements record that the students need to have signed off. Additional puzzling findings suggested higher expectations with planning tasks than with treatment-based tasks. Conclusion The findings suggest that the amount of direction required by students is a valid indicator of their level and has been adopted into the clinical assessment scheme. Further work will build on this to further define standards of competency for undergraduates.
Resumo:
Objective To examine the clinical utility of the Cornell Scale for Depression in Dementia (CSDD) in nursing homes. Setting 14 nursing homes in Sydney and Brisbane, Australia. Participants 92 residents with a mean age of 85 years. Measurements Consenting residents were assessed by care staff for depression using the CSDD as part of their routine assessment. Specialist clinicians conducted assessment of depression using the Semi-structured Clinical Diagnostic Interview for DSM-IV-TR Axis I Disorders for residents without dementia or the Provisional Diagnostic Criteria for Depression in Alzheimer Disease for residents with dementia to establish expert clinical diagnoses of depression. The diagnostic performance of the staff completed CSDD was analyzed against expert diagnosis using receiver operating characteristic (ROC) curves. Results The CSDD showed low diagnostic accuracy, with areas under the ROC curve being 0.69, 0.68 and 0.70 for the total sample, residents with dementia and residents without dementia, respectively. At the standard CSDD cutoff score, the sensitivity and specificity were 71% and 59% for the total sample, 69% and 57% for residents with dementia, and 75% and 61% for residents without dementia. The Youden index (for optimizing cut-points) suggested different depression cutoff scores for residents with and without dementia. Conclusion When administered by nursing home staff the clinical utility of the CSDD is highly questionable in identifying depression. The complexity of the scale, the time required for collecting relevant information, and staff skills and knowledge of assessing depression in older people must be considered when using the CSDD in nursing homes.
Resumo:
There have been substantial advances in small field dosimetry techniques and technologies, over the last decade, which have dramatically improved the achievable accuracy of small field dose measurements. This educational note aims to help radiation oncology medical physicists to apply some of these advances in clinical practice. The evaluation of a set of small field output factors (total scatter factors) is used to exemplify a detailed measurement and simulation procedure and as a basis for discussing the possible effects of simplifying that procedure. Field output factors were measured with an unshielded diode and a micro-ionisation chamber, at the centre of a set of square fields defined by a micro-multileaf collimator. Nominal field sizes investigated ranged from 6×6 to 98×98 mm2. Diode measurements in fields smaller than 30 mm across were corrected using response factors calculated using Monte Carlo simulations of the full diode geometry and daisy-chained to match micro-chamber measurements at intermediate field sizes. Diode measurements in fields smaller than 15 mm across were repeated twelve times over three separate measurement sessions, to evaluate the to evaluate the reproducibility of the radiation field size and its correspondence with the nominal field size. The five readings that contributed to each measurement on each day varied by up to 0.26%, for the “very small” fields smaller than 15 mm, and 0.18% for the fields larger than 15 mm. The diode response factors calculated for the unshielded diode agreed with previously published results, within 1.6%. The measured dimensions of the very small fields differed by up to 0.3 mm, across the different measurement sessions, contributing an uncertainty of up to 1.2% to the very small field output factors. The overall uncertainties in the field output factors were 1.8% for the very small fields and 1.1% for the fields larger than 15 mm across. Recommended steps for acquiring small field output factor measurements for use in radiotherapy treatment planning system beam configuration data are provided.
Resumo:
IgA is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intraepithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant SIgA we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra and intraepithelial stages of infection. We developed an in vitro model utilizing polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model utilizing pIgR-/- mice. SIgA targeting the extraepithelial chlamydial antigen, the major outer membrane protein (MOMP), significantly reduced infection in vitro by 24 % and in vivo by 44 %. Conversely, pIgR-mediated delivery of IgA targeting the intraepithelial inclusion membrane protein A (IncA) bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intraepithelial IgA targeting the secreted protease Chlamydia protease-like activity factor (CPAF) also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra but not intraepithelial chlamydial antigens for protection against a genital tract infection.
Resumo:
GVHD remains the major complication of allo-HSCT. Murine models are the primary system used to understand GVHD, and to develop potential therapies. Several factors are critical for GVHD in these models; including histo- compatibility, conditioning regimen, and T-cell number. We serendipitously found that environmental factors such as the caging system and bedding also significantly impact the kinetics of GVHD in these models. This is important because such factors may influence the experimental conditions required to cause GVHD and how mice respond to various treatments. Consequently, this is likely to alter interpretation of results between research groups, and the perceived effectiveness of experimental therapies.
Resumo:
Purpose To investigate the frequency of convergence and accommodation anomalies in an optometric clinical setting in Mashhad, Iran, and to determine tests with highest accuracy in diagnosing these anomalies. Methods From 261 patients who came to the optometric clinics of Mashhad University of Medical Sciences during a month, 83 of them were included in the study based on the inclusion criteria. Near point of convergence (NPC), near and distance heterophoria, monocular and binocular accommodative facility (MAF and BAF, respectively), lag of accommodation, positive and negative fusional vergences (PFV and NFV, respectively), AC/A ratio, relative accommodation, and amplitude of accommodation (AA) were measured to diagnose the convergence and accommodation anomalies. The results were also compared between symptomatic and asymptomatic patients. The accuracy of these tests was explored using sensitivity (S), specificity (Sp), and positive and negative likelihood ratios (LR+, LR−). Results Mean age of the patients was 21.3 ± 3.5 years and 14.5% of them had specific binocular and accommodative symptoms. Convergence and accommodative anomalies were found in 19.3% of the patients; accommodative excess (4.8%) and convergence insufficiency (3.6%) were the most common accommodative and convergence disorders, respectively. Symptomatic patients showed lower values for BAF (p = .003), MAF (p = .001), as well as AA (p = .001) compared with asymptomatic patients. Moreover, BAF (S = 75%, Sp = 62%) and MAF (S = 62%, Sp = 89%) were the most accurate tests for detecting accommodative and convergence disorders in terms of both sensitivity and specificity. Conclusions Convergence and accommodative anomalies are the most common binocular disorders in optometric patients. Including tests of monocular and binocular accommodative facility in routine eye examinations as accurate tests to diagnose these anomalies requires further investigation.