879 resultados para Climatic conditions
Resumo:
The Irish stoat, Mustela erminea hibernica (Thomas and Barrett-Hamilton), has been regarded as an intermediate between the British stoat and the weasel. In this study Irish stoats, mainly from road casualties, were collected and studied. A small number were also live-trapped and radio-tracked. Thus information was gathered on the stoat’s ecology, in particular its form (size and coat colours), reproduction, food habits, parasites, habitat utilisation mortality and predation. The Irish stoats studied were clearly not intermediate in size between British stoats and weasels. They showed considerable size overlap with British stoats, and marked size variation within Ireland. It is argued that size of stoats is determined by food supply early in life. The ventral coat pattern of Irish stoats is apparently unique in the Palaearctic, being similar to that of some stoats found on the west coast of North America. It is argued that this is an example of parallel evolution resulting from adaptation to similar climatic conditions. The stoats were reproductively active in spring and summer. Food consisted mainly of rabbits, but rats, birds, shrews mice and voles were also consumed. Mites were the most numerous ectoparasites, followed by lice, ticks and fleas. Damage by the parasitic nematode Skrjabingylus nasicola was found more frequently in female stoat skulls. Stoats were frequently found in a variety of habitats, both open and wooded. Some of the radio-tracked stoats climbed trees. Dens used were often rat holes. Only one home range, that of a breeding female, was considered to have been accurately measured. It was 22 ha. in size. Mortality is known to have been caused by road accidents and domestic carnivores. It is argued that predation by raptorial birds is important to stoat populations. Results of this study are compared with information available from elsewhere.
Resumo:
The long-term soil carbon dynamics may be approximated by networks of linear compartments, permitting theoretical analysis of transit time (i.e., the total time spent by a molecule in the system) and age (the time elapsed since the molecule entered the system) distributions. We compute and compare these distributions for different network. configurations, ranging from the simple individual compartment, to series and parallel linear compartments, feedback systems, and models assuming a continuous distribution of decay constants. We also derive the transit time and age distributions of some complex, widely used soil carbon models (the compartmental models CENTURY and Rothamsted, and the continuous-quality Q-Model), and discuss them in the context of long-term carbon sequestration in soils. We show how complex models including feedback loops and slow compartments have distributions with heavier tails than simpler models. Power law tails emerge when using continuous-quality models, indicating long retention times for an important fraction of soil carbon. The responsiveness of the soil system to changes in decay constants due to altered climatic conditions or plant species composition is found to be stronger when all compartments respond equally to the environmental change, and when the slower compartments are more sensitive than the faster ones or lose more carbon through microbial respiration. Copyright 2009 by the American Geophysical Union.
Resumo:
p.221-228
Resumo:
We investigated long-term spatial variability in a number of Harmful Algal Blooms (HABs) in the northeast Atlantic and North Sea using data from the Continuous Plankton Recorder. Over the last four decades, some dinoflagellate taxa showed pronounced variation in the south and east of the North Sea, with the most significant increases being restricted to the adjacent waters off Norway. There was also a general decrease along the eastern coast of the United Kingdom. The most prominent feature in the interannual bloom frequencies over the last four decades was the anomalously high values recorded in the late 1980s in the northern and central North Sea areas. The only mesoscale area in the northeast Atlantic to show a significant increase in bloom formation over the last decade was the Norwegian coastal region. The changing spatial patterns of HAB taxa and the frequency of bloom formation are discussed in relation to regional climate change, in particular, changes in temperature, salinity, and the North Atlantic Oscillation (NAO). Areas highly vulnerable to the effects of regional climate change on HABs are Norwegian coastal waters and the Skagerrak. Other vulnerable areas include Danish coastal waters, and to a lesser extent, the German and Dutch Bight and the northern Irish Sea. Quite apart from eutrophication, our results give a preview of what might happen to certain HAB genera under changing climatic conditions in temperate environments and their responses to variability of climate oscillations such as the NAO.
Resumo:
Plankton collected by the Continuous Plankton Recorder (CPR) survey were investigated for the English Channel, Celtic Sea and Bay of Biscay from 1979 to 1995. The main goal was to study the relationship between climate and plankton and to understand the factors influencing it. In order to take into account the spatial and temporal structure of biological data, a three-mode principal component analysis (PCA) was developed. It not only identified 5 zones characterised by their similar biological composition and by the seasonal and inter-annual evolution of the plankton, it also made species associations based on their location and year-to-year change. The studied species have stronger year-to-year fluctuations in abundance over the English Channel and Celtic Sea than the species offshore in the Bay of Biscay. The changes in abundance of plankton in the English Channel are negatively related to inter-annual changes of climatic conditions from December to March (North Atlantic Oscillation [NAO] index and air temperature). Thus, the negative relationship shown by Fromentin and Planque (1996; Mar Ecol Prog Ser 134:111-118) between year-to-year changes of Calanus finmarchicus abundance in the northern North Atlantic and North Sea and NAO was also found for the most abundant copepods in the Channel. However, the hypothesis proposed to explain the plankton/NAO relationship is different for this region and a new hypothesis is proposed. In the Celtic Sea, a relationship between the planktonic assemblage and the air temperature was detected, but it is weaker than for the English Channel. No relationship was found for the Bay of Biscay. Thus, the local physical environment and the biological composition of these zones appear to modify the relationship between winter climatic conditions and the year-to-year fluctuations of the studied planktonic species. This shows, therefore, that the relationship between climate and plankton is difficult to generalise.
Resumo:
The Black Sea ecosystem experienced severe eutrophication-related degradation during the 1970s and 1980s. However, in recent years the Black Sea has shown some signs of recovery which are often attributed to a reduction in nutrient loading. Here, SeaWiFS chlorophyll a (chl a), a proxy for phytoplankton biomass, is used to investigate spatio-temporal patterns in Black Sea phytoplankton dynamics and to explore the potential role of climate in the Black Sea's recovery. Maps of chl a anomalies, calculated relative to the 8 year mean, emphasize spatial and temporal variability of phytoplankton biomass in the Black Sea, particularly between the riverine-influenced Northwest Shelf and the open Black Sea. Evolution of phytoplankton biomass has shown significant spatial variability of persistence of optimal bloom conditions between three major regions of the Black Sea. With the exception of 2001, chl a has generally decreased during our 8 year time-series. However, the winter of 2000–2001 was anomalously warm with low wind stress, resulting in reduced vertical mixing of the water column and retention of nutrients in the photic zone. These conditions were associated with anomalously high levels of chl a throughout much of the open Black Sea during the following spring and summer. The unusual climatic conditions occurring in 2001 may have triggered a shift in the Black Sea's chl a regime. The long-term significance of this recent shift is still uncertain but illustrates a non-linear response to climate forcing that makes future ecosystem changes in the pelagic Black Sea ecosystem difficult to predict.
Resumo:
Diatoms exist in almost every aquatic regime; they are responsible for 20% of global carbon fixation and 25% of global primary production, and are regarded as a key food for copepods, which are subsequently consumed by larger predators such as fish and marine mammals. A decreasing abundance and a vulnerability to climatic change in the North Atlantic Ocean have been reported in the literature. In the present work, a data matrix composed of concurrent satellite remote sensing and Continuous Plankton Recorder (CPR) in situ measurements was collated for the same spatial and temporal coverage in the Northeast Atlantic. Artificial neural networks (ANNs) were applied to recognize and learn the complex non-monotonic and non-linear relationships between diatom abundance and spatiotemporal environmental factors. Because of their ability to mimic non-linear systems, ANNs proved far more effective in modelling the diatom distribution in the marine ecosystem. The results of this study reveal that diatoms have a regular seasonal cycle, with their abundance most strongly influenced by sea surface temperature (SST) and light intensity. The models indicate that extreme positive SSTs decrease diatom abundances regardless of other climatic conditions. These results provide information on the ecology of diatoms that may advance our understanding of the potential response of diatoms to climatic change.
Resumo:
Latitudinal gradients in diversity are among the most striking features in ecology. For terrestrial species, climate (i.e. temperature and precipitation) is believed to exert a strong influence on the geographical distributions of diversity through its effects on energy availability. Here, we provide the first global description of geographical variation in the diversity of marine copepods, a key trophic link between phytoplankton and fish, in relation to environmental variables. We found a polar-tropical difference in copepod diversity in the Northern Hemisphere where diversity peaked at subtropical latitudes. In the Southern Hemisphere, diversity showed a tropical plateau into the temperate regions. This asymmetry around the Equator may be explained by climatic conditions, in particular the influence of the Inter-Tropical Convergence Zone, prevailing mainly in the northern tropical region. Ocean temperature was the most important explanatory factor among all environmental variables tested, accounting for 54 per cent of the variation in diversity. Given the strong positive correlation between diversity and temperature, local copepod diversity, especially in extra-tropical regions, is likely to increase with climate change as their large-scale distributions respond to climate warming.
Resumo:
In East Africa, Fasciola gigantica is generally the causative agent of fasciolosis but there have been reports of F. hepatica in cattle from highland regions of Kenya, Ethiopia, Uganda and Zaire. The topography of the Southern Highlands of Tanzania provides an environment where the climatic conditions exist for the sustenance of lymnaeid species capable of Supporting both Fasciola hepatica and F. gigantica. Theoretically this would allow interaction between fasciolid species and the possible creation of hybrids. In this report we present molecular data confirming the existence of the snail, Lymnaea truncatula, at high altitude on the Kitulo Plateau of the Southern Highlands, Tanzania, along with morphometric and molecular data confirming the presence of F. hepatica in the corresponding area. At lower altitudes, where climatic conditions were unfavourable for the existence of L. truncatula, the presence of its sister species L. natalensis was confirmed by molecular data along with its preferred fasciolid parasite, F. gigantica. Analysis based on a 618 bp sequence of the 28S rRNA gene did not reveal the presence of hybrid fasciolids in our fluke samples.
Resumo:
Animals inhabiting environments with low productivity and food availability commonly have reduced energy demands and increased digestive efficiencies. The dry matter intake (DMI), apparent digestible dry matter (ADDM), digestible efficiency (DE) and digestible energy intake (DEI) of two populations of common spiny mouse Acomys cahirinus were compared during both winter and summer under conditions of simulated water stress. Mice were captured from the north- and south-facing slopes (NFS and SFS) of the same canyon that represent mesic and xeric habitats, respectively. Measured variables were also compared between F-1 mice that had been born to either NFS or SFS mice, and raised in the laboratory. SFS mice were able to assimilate energy more efficiently than NFS mice during the summer. By comparison, NFS mice were able to assimilate more energy during the winter. During winter, NFS mice assimilated more energy at low levels of water stress, whereas SFS mice assimilated more energy at higher levels. Differences were also apparent in F-1 mice. It is therefore suggested that local climatic conditions can impose physiological adaptations that are retained in succeeding generations, creating unique meta-populations.
Resumo:
Owing to proximity of the North Atlantic Stream and the shelf, the And circle divide ya biota are assumed to have responded rapidly to climatic changes taking place after the Weichselian glaciation. Palynological, macrofossil, loss-on-ignition, tephra and C-14 data from three sites at the northern part of the island of And circle divide ya were studied. The period 12 300-11 950 cal. yr BP was characterized by polar desert vegetation, and 11 950-11 050 cal. yr BP by a moisture-demanding predominantly low-arctic Oxyria vegetation. During the period 11 050-10 650 cal. yr BP, there was a climatic amelioration towards a sub-arctic climate and heaths dominated by Empetrum. After 10 650 cal. yr BP the Oxyria vegetation disappeared. As early as about 10 800 cal. yr BP the bryozoan Cristatella mucedo indicated a climate sufficient for Betula woodland. However, tree birch did not establish until 10 420-10 250 cal. yr BP, indicating a time-lag for the formation of Betula ecotypes adapted to the oceanic climate of And circle divide ya. From about 10 150 to 9400 cal. yr BP the summers were dry and warm. There was a change towards moister, though comparatively warm, climatic conditions about 9400 cal. yr BP. The present data are compared with evidence from marine sediments and the deglaciation history in the region. It is suggested that during most of the period 11 500-10 250 cal. yr BP a similar situation as in present southern Greenland existed, with birch woodland in the inner fjords near the ice sheet and low-arctic heath vegetation along the outer coast.
Resumo:
Although pollinator declines are a global biodiversity threat, the demography of the western honeybee (Apis mellifera) has not been considered by conservationists because it is biased by the activity of beekeepers. To fill this gap in pollinator decline censuses and to provide a broad picture of the current status of honeybees across their natural range, we used microsatellite genetic markers to estimate colony densities and genetic diversity at different locations in Europe, Africa, and central Asia that had different patterns of land use. Genetic diversity and colony densities were highest in South Africa and lowest in Northern Europe and were correlated with mean annual temperature. Confounding factors not related to climate, however, are also likely to influence genetic diversity and colony densities in honeybee populations. Land use showed a significantly negative influence over genetic diversity and the density of honeybee colonies over all sampling locations. In Europe honeybees sampled in nature reserves had genetic diversity and colony densities similar to those sampled in agricultural landscapes, which suggests that the former are not wild but may have come from managed hives. Other results also support this idea: putative wild bees were rare in our European samples, and the mean estimated density of honeybee colonies on the continent closely resembled the reported mean number of managed hives. Current densities of European honeybee populations are in the same range as those found in the adverse climatic conditions of the Kalahari and Saharan deserts, which suggests that beekeeping activities do not compensate for the loss of wild colonies. Our findings highlight the importance of reconsidering the conservation status of honeybees in Europe and of regarding beekeeping not only as a profitable business for producing honey, but also as an essential component of biodiversity conservation.
Resumo:
The monitoring of temperature and moisture changes in response to different micro-environment of building stones is essential to understand the material behaviour and the degradation mechanisms. From a practical point of view, having a continuous and detailed understanding of micro-environmental changes in building stones helps to assist in their maintenance and repair strategies. Temperature within the stone is usually monitored by means of thermistors, whereas wide ranges of techniques are available for monitoring the moisture. In the case of concrete an electrical resistance method has previously been used as an inexpensive tool for monitoring moisture changes. This paper describes the adaptation of this technique and describes its further development for monitoring moisture movement in building stones.
In this study a block of limestone was subjected to intermittent infrared radiation with programmed cycles of ambient temperature, rainfall and wind conditions in an automated climatic chamber. The temperature and moisture changes at different depths within the stone were monitored by means of bead thermistors and electrical resistance sensors. This experiment has helped to understand the thermal conductivity and moisture transport from surface into deeper parts of the stone at different simulated extreme climatic conditions. Results indicated that variations in external ambient conditions could substantially affect the moisture transport and temperature profile within the micro-environment of building stones and hence they could have a significant impact on stone decay.
Resumo:
Geochemical variables (TOC, C/N, TS, delta C-13) and diatom assemblages were analyzed in a lake sediment sequence from Nong (Lake) Han Kumphawapi in northeast Thailand to reconstruct regional climatic and environmental history during the Holocene. By around c. 10,000-9400 cal yr BP, a large shallow freshwater lake had formed in the Kumphawapi basin. Oxygenated bottom waters and a well-mixed water column were characteristic of this early lake stage, which was probably initiated by higher effective moisture and a stronger summer monsoon. Decreased run-off after c. 6700 cal yr BP favored increased aquatic productivity in the shallow lake. Multiple proxies indicate a marked lowering of the lake level around 5900 cal yr BP, the development of an extensive wetland around 5400 cal yr BP, and the subsequent transition to a peatland. The shift from shallow lake to wetland and later to a peatland is interpreted as a response to lower effective moisture. A hiatus at the transition from wetland to peatland suggests very low accumulation rates, which may result from very dry climatic conditions. A rise in groundwater and lake level around 3200 cal yr BP allowed the re-establishment of a wetland in the Kumphawapi basin. However, the sediments deposited between c. 3200 and 1600 cal yr BP provide evidence for at least two hiatuses at c. 2700-2500 cal yr BP, and at c. 1900-1600 cal yr BP, which would suggest surface dryness and consequently periods of low effective moisture. Around 1600 cal yr BP a new shallow lake became re-established in the basin. Although the underlying causes for this new lake phase remain unclear, we hypothesize that higher effective moisture was the main driving force. This shallow lake phase continued up to the present but was interrupted by higher nutrient fluxes to the lake around 1000-600 cal yr BP. Whether this was caused by intensified human impact in the catchment or, whether this signals a lowering of the lake level due to reduced effective moisture, needs to be corroborated by further studies in the region. The multi-proxy study of Kumphawapi's sediment core CP3A clearly shows that Kumphawapi is a sensitive archive for recording past shifts in effective moisture, and as such in the intensity of the Asian summer monsoon. Many more continental paleorecords, however, will be needed to fully understand the spatial and temporal patterns of past changes in Asian monsoon intensity and its ecosystem impacts. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Biotic communities in Antarctic terrestrial ecosystems are relatively simple and often lack higher trophic levels (e. g. predators); thus, it is often assumed that species' distributions are mainly affected by abiotic factors such as climatic conditions, which change with increasing latitude, altitude and/or distance from the coast. However, it is becoming increasingly apparent that factors other than geographical gradients affect the distribution of organisms with low dispersal capability such as the terrestrial arthropods. In Victoria Land (East Antarctica) the distribution of springtail (Collembola) and mite (Acari) species vary at scales that range from a few square centimetres to regional and continental. Different species show different scales of variation that relate to factors such as local geological and glaciological history, and biotic interactions, but only weakly with latitudinal/altitudinal gradients. Here, we review the relevant literature and outline more appropriate sampling designs as well as suitable modelling techniques (e. g. linear mixed models and eigenvector mapping), that will more adequately address and identify the range of factors responsible for the distribution of terrestrial arthropods in Antarctica.