895 resultados para Climate Change: Learning from the past climate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the findings of an investigation of the challenges Australian manufacturers are currently facing. A comprehensive questionnaire survey was conducted among leading Australian manufacturers. This paper reports the main findings of this study. Evidence indicates that product quality and reliability (Q & R) are the main challenges for Australian manufacturers. Design capability and time to market came second. Results show that there is no effective information exchange between the parties involved in production and quality control. Learning from the past mistakes is not proving to have significant effects on improving product quality. The technological innovation speed is high and companies are introducing as many as 5 new products in a year. This technological speed has pressure on the Q & R of new products. To overcome the new challenges, companies need a Q & R improvement model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three dimensional models and groundwater quality are combined to better understand and conceptualise groundwater systems in complex geological settings in the Wairau Plain, Marlborough. Hydrochemical facies, which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters, are identified within geological formations to assess natural water-rock interactions, redox potential and human agricultural impact on groundwater quality in the Wairau Plain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans les dernières décennies, les changements morphologiques des maisons iraniennes, l’arrivage de l'éclairage artificiel et le manque de connaissance suffisante de la valeur de la lumière du jour pour le bien-être des occupants ont résulté une diminution de l'utilisation de la lumière du jour dans les habitations iraniennes contemporaines. En conséquence, le niveau du bien-être des occupants a décru ce qui peut être corrélée avec la diminution de l'utilisation de la lumière du jour. Considérant l'architecture traditionnelle iranienne et l'importance de la lumière du jour dans les habitations traditionnelles, cette recherche étudie l’utilisation de la lumière du jour dans les habitations traditionnelles et explore comment extrapoler ces techniques dans les maisons contemporaines pourrait augmenter l'utilisation de la lumière du jour et par conséquence améliorer le bien-être des occupants. Une revue de littérature, une enquête des experts iraniens et une étude de cas des maisons à cour traditionnelles à la ville de Kashan ont permis de recueillir les données nécessaires pour cette recherche. De par le contexte de recherche, la ville de Kashan a été choisie particulièrement grâce à sa texture historique intacte. L’analyse de la lumière du jour a été faite par un logiciel de simulation pour trois maisons à cour de la ville de Kashan ayant les mêmes caractéristiques de salon d’hiver. Cette étude se concentre sur l’analyse de la lumière du jour dans les salons d'hiver du fait de la priorité obtenue de l'enquête des experts et de la revue de littérature. Les résultats de cette recherche montrent que l’extrapolation des techniques traditionnelles de l'utilisation de lumière du jour dans les habitations modernes peut être considéré comme une option de conception alternative. Cette dernière peut optimiser l'utilisation de lumière du jour et par conséquence améliorer le bien-être des occupants. L'approche utilisée dans cette recherche a fourni une occasion d’étudier l'architecture du passé et d’évaluer plus précisément son importance. Cette recherche contribue ainsi à définir un modèle en tirant les leçons du passé pour résoudre les problèmes actuels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): High alpine environments provide a variety of paleorecords based on physical (glaciers, glacio-lacustrine sedimentation) and biological systems (tree rings, tree-line fluctuations). These records have varying temporal resolution and contain different climate-related signals but, in concert, provide a more comprehensive reconstruction of past climates than is possible from any single archive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction of biotic responses to future climate change in tropical Africa tends to be based on two modelling approaches: bioclimatic species envelope models and dynamic vegetation models. Another complementary but underused approach is to examine biotic responses to similar climatic changes in the past as evidenced in fossil and historical records. This paper reviews these records and highlights the information that they provide in terms of understanding the local- and regional-scale responses of African vegetation to future climate change. A key point that emerges is that a move to warmer and wetter conditions in the past resulted in a large increase in biomass and a range distribution of woody plants up to 400–500 km north of its present location, the so-called greening of the Sahara. By contrast, a transition to warmer and drier conditions resulted in a reduction in woody vegetation in many regions and an increase in grass/savanna-dominated landscapes. The rapid rate of climate warming coming into the current interglacial resulted in a dramatic increase in community turnover, but there is little evidence for widespread extinctions. However, huge variation in biotic response in both space and time is apparent with, in some cases, totally different responses to the same climatic driver. This highlights the importance of local features such as soils, topography and also internal biotic factors in determining responses and resilience of the African biota to climate change, information that is difficult to obtain from modelling but is abundant in palaeoecological records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use long instrumental temperature series together with available field reconstructions of sea-level pressure (SLP) and three-dimensional climate model simulations to analyze relations between temperature anomalies and atmospheric circulation patterns over much of Europe and the Mediterranean for the late winter/early spring (January–April, JFMA) season. A Canonical Correlation Analysis (CCA) investigates interannual to interdecadal covariability between a new gridded SLP field reconstruction and seven long instrumental temperature series covering the past 250 years. We then present and discuss prominent atmospheric circulation patterns related to anomalous warm and cold JFMA conditions within different European areas spanning the period 1760–2007. Next, using a data assimilation technique, we link gridded SLP data with a climate model (EC-Bilt-Clio) for a better dynamical understanding of the relationship between large scale circulation and European climate. We thus present an alternative approach to reconstruct climate for the pre-instrumental period based on the assimilated model simulations. Furthermore, we present an independent method to extend the dynamic circulation analysis for anomalously cold European JFMA conditions back to the sixteenth century. To this end, we use documentary records that are spatially representative for the long instrumental records and derive, through modern analogs, large-scale SLP, surface temperature and precipitation fields. The skill of the analog method is tested in the virtual world of two three-dimensional climate simulations (ECHO-G and HadCM3). This endeavor offers new possibilities to both constrain climate model into a reconstruction mode (through the assimilation approach) and to better asses documentary data in a quantitative way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-ΣCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower ΣCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more ΣCO2-depleted and deep waters are ΣCO2-enriched compared with the waters of the present. In the northern Indian Ocean, δ13C and Cd data are consistent with upper water ΣCO2 depletion relative to the present. There is no evident proximate source of this ΣCO2-depleted water, so I suggest that ΣCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000–130,000 years before the present).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of the Kyoto Protocol renders it incapable of effectively responding to the problem of anthropogenic climate change. Therefore, this article explores the opportunity to construct a new, principled legal approach to respond to climate change that is premised on nationally derived legal responses. To do so, this article considers the theoretical foundation of the international legal response to climate change – Hardin's "The Tragedy of the Commons‟ – and the systemic design faults of the Kyoto Protocol. This article also suggests four principles – a judicious mix of legal instruments, flexibility, intrinsic legal coherence, and quantifiable and achievable targets for the reduction of greenhouse gas intensity – that are necessary to guide the creation of a nationally derived legal response to climate change. This approach is intended to provide the catalyst for new bilateral and multilateral arrangements that can, with the passing of time, generate sufficient momentum to drive the creation of a new and effective cooperative international legal framework to mitigate anthropogenic climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through its mandate to protect and preserve places of ‘outstanding universal value’, the World Heritage Convention provides an unlikely yet effective tool in global efforts to mitigate climate change. The practical efficacy of the Strategy to Assist States Parties to Implement Appropriate Management Responses (‘the Strategy’), which represents the World Heritage Committee’s primary response to the threats posed by climate change to World Heritage sites, is undermined by its weak stance on mitigation. This paper argues that the World Heritage Convention imposes stronger obligations on States Parties than those contained in the Strategy, including a duty on States Parties to commit to ‘deep cuts’ in greenhouse gas emissions. In order to ensure the continuing success of the World Heritage Convention States Parties must engage in extensive mitigation strategies without delay.