970 resultados para Classical methods
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
Rationing occurs if the demand for a certain good exceeds its supply. In such situations a rationing method has to be specified in order to determine the allocation of the scarce good to the agents. Moulin (1999) introduced the notion of probabilistic rationing methods for the discrete framework. In this paper we establish a link between classical and probabilistic rationing methods. In particular, we assign to any given classical rationing method a probabilistic rationing method with minimal variance among those probabilistic rationing methods, which result in the same expected distributions as the given classical rationing method.
Resumo:
The purpose of this study is to adapt and combine the following methods of sales forecasting: Classical Time-Series Decomposition, Operationally Based Data and Judgmental Forecasting for use by military club managers.
Resumo:
Resource Selection (or Query Routing) is an important step in P2P IR. Though analogous to document retrieval in the sense of choosing a relevant subset of resources, resource selection methods have evolved independently from those for document retrieval. Among the reasons for such divergence is that document retrieval targets scenarios where underlying resources are semantically homogeneous, whereas peers would manage diverse content. We observe that semantic heterogeneity is mitigated in the clustered 2-tier P2P IR architecture resource selection layer by way of usage of clustering, and posit that this necessitates a re-look at the applicability of document retrieval methods for resource selection within such a framework. This paper empirically benchmarks document retrieval models against the state-of-the-art resource selection models for the problem of resource selection in the clustered P2P IR architecture, using classical IR evaluation metrics. Our benchmarking study illustrates that document retrieval models significantly outperform other methods for the task of resource selection in the clustered P2P IR architecture. This indicates that clustered P2P IR framework can exploit advancements in document retrieval methods to deliver corresponding improvements in resource selection, indicating potential convergence of these fields for the clustered P2P IR architecture.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The purpose of the present study was to investigate percentage body fat (%BF) differences in three Spanish dance disciplines and to compare skinfold and bioelectrical impedance predictions of body fat percentage in the same sample. Seventy-six female dancers, divided into three groups, Classical (n=23), Spanish (n=29) and Flamenco (n=24), were measured using skinfold measurements at four sites: triceps, subscapular, biceps and iliac crest, and whole body multi-frequency bioelectrical impedance (BIA). The skin-fold measures were used to predict body fat percentage via Durnin and Womersley's and Segal, Sun and Yannakoulia equations by BIA. Differences in percent fat mass between groups (Classical, Spanish and Flamenco) were tested by using repeated measures analysis (ANOVA). Also, Pearson's product-moment correlations were performed on the body fat percentage values obtained using both methods. In addition, Bland-Altman plots were used to assess agreement, between anthropometric and BIA methods. Repeated measures analysis of variance did not found differences in %BF between modalities (p<0.05). Fat percentage correlations ranged from r= 0.57 to r=0.97 (all, p<0.001). Bland-Altman analysis revealed differences between BIA Yannakoulia as a reference method with BIA Segal (-0.35 ± 2.32%, 95%CI: -0.89to 0.18, p=0.38), with BIA Sun (-0.73 ± 2.3%, 95%CI: -1.27 to -0.20, p=0.014) and Durnin-Womersley (-2.65 ± 2,48%, 95%CI: -3.22 to -2.07, p<0.0001). It was concluded that body fat percentage estimates by BIA compared with skinfold method were systematically different in young adult female ballet dancers, having a tendency to produce underestimations as %BF increased with Segal and Durnin-Womersley equations compared to Yannakoulia, concluding that these methods are not interchangeable.
Resumo:
Process systems design, operation and synthesis problems under uncertainty can readily be formulated as two-stage stochastic mixed-integer linear and nonlinear (nonconvex) programming (MILP and MINLP) problems. These problems, with a scenario based formulation, lead to large-scale MILPs/MINLPs that are well structured. The first part of the thesis proposes a new finitely convergent cross decomposition method (CD), where Benders decomposition (BD) and Dantzig-Wolfe decomposition (DWD) are combined in a unified framework to improve the solution of scenario based two-stage stochastic MILPs. This method alternates between DWD iterations and BD iterations, where DWD restricted master problems and BD primal problems yield a sequence of upper bounds, and BD relaxed master problems yield a sequence of lower bounds. A variant of CD, which includes multiple columns per iteration of DW restricted master problem and multiple cuts per iteration of BD relaxed master problem, called multicolumn-multicut CD is then developed to improve solution time. Finally, an extended cross decomposition method (ECD) for solving two-stage stochastic programs with risk constraints is proposed. In this approach, a CD approach at the first level and DWD at a second level is used to solve the original problem to optimality. ECD has a computational advantage over a bilevel decomposition strategy or solving the monolith problem using an MILP solver. The second part of the thesis develops a joint decomposition approach combining Lagrangian decomposition (LD) and generalized Benders decomposition (GBD), to efficiently solve stochastic mixed-integer nonlinear nonconvex programming problems to global optimality, without the need for explicit branch and bound search. In this approach, LD subproblems and GBD subproblems are systematically solved in a single framework. The relaxed master problem obtained from the reformulation of the original problem, is solved only when necessary. A convexification of the relaxed master problem and a domain reduction procedure are integrated into the decomposition framework to improve solution efficiency. Using case studies taken from renewable resource and fossil-fuel based application in process systems engineering, it can be seen that these novel decomposition approaches have significant benefit over classical decomposition methods and state-of-the-art MILP/MINLP global optimization solvers.
Resumo:
The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.
Resumo:
In this study, we carried out a comparative analysis between two classical methodologies to prospect residue contacts in proteins: the traditional cutoff dependent (CD) approach and cutoff free Delaunay tessellation (DT). In addition, two alternative coarse-grained forms to represent residues were tested: using alpha carbon (CA) and side chain geometric center (GC). A database was built, comprising three top classes: all alpha, all beta, and alpha/beta. We found that the cutoff value? at about 7.0 A emerges as an important distance parameter.? Up to 7.0 A, CD and DT properties are unified, which implies that at this distance all contacts are complete and legitimate (not occluded). We also have shown that DT has an intrinsic missing edges problem when mapping the first layer of neighbors. In proteins, it may produce systematic errors affecting mainly the contact network in beta chains with CA. The almost-Delaunay (AD) approach has been proposed to solve this DT problem. We found that even AD may not be an advantageous solution. As a consequence, in the strict range up ? to 7.0 A, the CD approach revealed to be a simpler, more complete, and reliable technique than DT or AD. Finally, we have shown that coarse-grained residue representations may introduce bias in the analysis of neighbors in cutoffs up to ? 6.8 A, with CA favoring alpha proteins and GC favoring beta proteins. This provides an additional argument pointing to ? the value of 7.0 A as an important lower bound cutoff to be used in contact analysis of proteins.