995 resultados para Circumferential bone defects
Resumo:
The early tooth loss and periodontal disease often leave inadequate bone volume for installation of osseointegrated implants. The autogenous bone graft is considered the gold standard for reconstruction of residual bone defects. Some surgical techniques can be performed, including extra or intraoral donor sites depending on the degree of bone loss, depending on surgical-prosthetic planning and general condition of the patient. The intraoral bone grafts offer a safe option to rebuilt bone volume in smaller rehabilitations, with low morbidity and minimal postoperative discomfort. Among the possible donor sites, the mandibular ramus and body, which offer predominantly cortical bone, and the chin area, which offers corticomedullary bone tissue, can be harvested. The graft will be suitable both in quantity and quality, preserving the capacity of osteogenesis, osteoinduction and osteoconduction, which differentiate autogenous grafts from other biomaterials. The aim of this study was to report a clinical case in which the mandibular ramus graft was used for total reconstruction of an edentulous maxilla, showing that even large areas can be reconstructed with grafts from intraoral origin. All the steps that allowed the complete reconstruction of the maxilla done by an intraoral donor area are listed in the text, culminating in an extremely satisfactory clinical result.
Resumo:
Extensive intraosseous lesions represent a clinical challenge for the periodontist. Sites with bone defects have been shown to be at higher risk of periodontitis progression in patients who had not received periodontal therapy. Thus, the aim of this case report was to describe a novel approach for the treatment of 1-walled intraosseous defect by combining nonsurgical periodontal therapy and orthodontic movement toward the bone defect, avoiding regenerative and surgical procedures. A 47-year-old woman underwent the proposed procedures for the treatment of her left central incisor with 9 mm probing depth and 1-walled intraosseous defect in its mesial aspect. Initially, basic periodontal therapy with scaling and root planning was accomplished. Two months later, an orthodontic treatment was planned to eliminate the intraosseous lesion and to improve the interproximal papillary area. Orthodontic root movement toward the osseous defect was performed for 13 months with light forces. After 6 years postoperative it was concluded that combined basic periodontal therapy and orthodontic movement was capable of eliminating the intraosseous defect and improve the esthetics in the interproximal papillary area between the central incisors.
Resumo:
The correction of bone defects is the restoration of lost structures which can be replaced by alloplastic implants or bone grafts. Due to the known disadvantages of removal of autogenous grafts, most researches in dentistry aim to develop alloplastic or non-alloplastic materials able to replace bone without these limitations. Beta-Tricalcium Phosphate (β-TCP) is a synthetic granular bone substitute, biocompatible, osteoconductive, which can be used in the alveolar reconstruction. In this work, we perform a literature review on the β-TCP characteristics and discuss its application in dentistry.
Resumo:
Introduction: The Keratocystic Odontogenic Tumor (KCOT) is a benign odontogenic tumor with an infiltrative and potentially aggressive behavior with high recurrence rates. The KCOT occurs more often in men than women, with a frequency of 2:1, being more frequent in the mandible with a predilection for the body and branch. Treatment of KCOT remains controversial. Treatment usually includes enucleation, marsupialization, peripheral ostectomy, curettage associated with Carnoy solution and resection. Objective: To report a case of a KCOT located in the mandible. Case report: male patient, 15 years, with a KCOT on the right side of the mandible treated by enucleation and peripheral ostectomy, with four years of preservation, with no signs of recurrence. Final Comments: The treatment by enucleation associated with peripheral ostectomy reduces the relapse rate, preserves anatomical structures and can avoid a second surgical procedure for reconstruction of bone defects generated in surgery en bloc resection.
Resumo:
Forced orthodontic eruption (FOE) is a non-surgical treatment option that allows modifying the osseous and gingival topography. The aim of this article is to present a clinical case of a FOE, which resulted in an improvement of the amount of available bone and soft-tissues for implant site development. Patient was referred for treatment of mobility and unesthetic appearance of their maxillary incisors. Clinical and radiographic examination revealed inflamed gingival tissue, horizontal and vertical tooth mobility and interproximal angular bone defects. It was chosen a multidisciplinary treatment approach using FOE, tooth extraction, and immediate implant placement to achieve better esthetic results. The use of FOE, in periodontally compromised teeth, promoted the formation of a new bone and soft-tissue in a coronal direction, without additional surgical procedures, enabling an esthetic, and functional implant-supported restoration.
Resumo:
This study used histomorphometric analysis to investigate the effect of sodium alendronate, used for the treatment of osteoporosis, on the repair of surgically-induced bone defects in the tibia of castrated rats. Methods: The castrated animals were given subcutaneous injections of sodium alendronate (0.7mg/Kg) diluted in saline once a week; the control animals were given the same dose of saline. At 16, 30 and 44 days after the first injection of sodium alendronate, the animals were sacrificed and the right tibias were removed and processed for histomorphometric analysis. The volumetric bone mineral density was estimated by a reticular grid (25 points) attached to a light microscope. The number of points on the bone tissue was counted in the histological sections, totaling 100 points/animal. Results: The results revealed that sodium alendronate stimulated bone formation in castrated rats in all occasions, mainly at 16 and 30 days. Conclusion: Sodium alendronate affects mineral homeostasis, promoting bone repair.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
AimThe aim of this study was to evaluate the healing of autologous bone block grafts or deproteinized bovine bone mineral (DBBM) block grafts applied concomitantly with collagen membranes for horizontal alveolar ridge augmentation.Material and methodsIn six Labrador dogs, molars were extracted bilaterally, the buccal bony wall was removed, and a buccal box-shaped defect created. After 3months, a bony block graft was harvested from the right ascending ramus of the mandible and reduced to a standardized size. A DBBM block was tailored to similar dimensions. The two blocks were secured with screws onto the buccal wall of the defects in the right and left sides of the mandible, respectively. Resorbable membranes were applied at both sides, and the flaps sutured. After 3months, one implant was installed in each side of the mandible, in the interface between grafts and parent bone. After 3months, biopsies were harvested and ground sections prepared to reveal a 6-month healing period of the grafts.Results776.2% and 5.9 +/- 7.5% of vital mineralized bone were found at the autologous bone and DBBM block graft sites, respectively. Moreover, at the DBBM site, 63 +/- 11.7% of connective tissue and 31 +/- 15.5% of DBBM occupied the area analyzed. Only 0.2 +/- 0.4% of DBBM was found in contact with newly formed bone. The horizontal loss was in a mean range of 0.9-1.8mm, and 0.3-0.8mm, at the autologous bone and DBBM block graft sites, respectively.ConclusionsAutologous bone grafts were vital and integrated to the parent bone after 6months of healing. In contrast, DBBM grafts were embedded into connective tissue, and only a limited amount of bone was found inside the scaffold of the biomaterial.
Resumo:
The purpose of this study was to evaluate the possibility to obtaining guided bone regeneration utilizing a nonporous PTFE barrier in the osseointegrated implants, protruding from the bone level of the rabbit tíbia. The histologic characteristics of the interface between titanium implants, one group titanium-plasma coated, another group with acid-treated surfaces and the regenerated bone were also studied Twenty Screw-Vent implants were placed in tibias of five rabbits, two at the right side and two at the left side, protruding 3 mm from the bone level, to create a horizontal bone defect. ln the experimental side, the implants and adjacent bone were protected with a nonporous PTFE barrier. Histologic analysis after three months showed that all implants were in direct contact with the bane. Histologic measurements showed an average gain in bone height of the 2.15 and 2.42 mm for the barrier group and 1.95 and 0.43 mm for the control defects, in the titanium plasma-spray and acid-treated implant surfaces, respectively. The results suggest that the placement of implants protruding 3 mm from crestal bone defects may result in vertical bone augmentation and the regenerated bone is able to osseointegrate implants. lt seems to be critical the use of the PTFE barrier when acid-treated surface implants are inserted
Resumo:
Periodontal disease progress by destructive acute phases intercalated by reparative chronic phases. The aim of this study was to investigate the clinical and histological evidence of the periodontal disease reparative phase by analyzing bone wall conditions inside periodontal pockets and histologic images of periodontal pockets, identified in relevant publications. 81 patients with periodontitis, were randomly assigned into this study. Clinical and radiographic parameters were established to diagnose periodontal disease providing a sample of 133 diseased areas, which were treated by modified Widman flap. Documentation by digital photography were recorded in the surgery. Relevant publications showing histological images of periodontal pockets, were identified in Medline, PubMed and Google data base, were scanned and digitalized. All images obtained were evaluated and the presences of the reparative evidence in the zone around the underlying destroyed alveolar bone were critically analyzed. All periodontal bone defects, showed cortical bone reparations at different levels inside periodontal bone defects. All histologic images of periodontal pockets identified in relevant publications showed repaired gingival-attached connective tissue localized above underlying destroyed alveolar bone. All the evidences analyzed in this study suggested that periodontal disease is predominantly chronic, quiescent, showing reparative phases in different levels.
Resumo:
Background: The principles of tissue regeneration to repair alveolar bone defects are based on the fabrication of a biologic barrier with different biomaterials. Therefore, the present study aimed to investigate the guided bone regeneration (GBR) by using membrane of demineralized bovine bone matrix (DBBM) on experimental defects in tibia of dogs. Methods: Four dogs were used and after anesthesia, shaving and antisepsis, two standardized bone defects were created on the right tibia of each animal with trephine drill. In the Control Group, the defects were filled with blood coagulum, while in the Treated Group, a membrane of DBBM was used to cover the defects. After 90 days, animals were sacrificed. Results: In the Treated Group, 67.4% of new bone formation was observed and, in the Control Group, 32.6% of the bone tissue reabsorbed when compared with initial bone volume. The membrane remained intact and no inflammatory tissue was observed on membrane/ bone interface. Conclusion: It was concluded that the use of DBBM is an osteoconductive material, presents biocompatibility and may be promise option to repair bone defects.
Resumo:
When implants are installed immediately after tooth extraction may occur anchoring primary decreased, delay or failure of osseointegration process. This occurs because of the large interface between the surrounding walls of the socket and the surface of the implant. For reconstruction, replacement or filling of bone defects the solution can be obtained with the use of autogenous, heterogenous or allogeneic bone grafts. However, these grafts suffer certain drawbacks, particularly a high rate of donor site morbidity, limited amounts of available bone, and the additional operative time required for harvest. For these reasons, intensive efforts have been directed toward developing alternative substances for to either augment or substitute. In this paper, we will examine some of the commonly used materials : fibrin and calcium phosphate.
Resumo:
Allogeneic, fresh-frozen bone has been used in order to replace bone autografts. However, its osteoinduction and osteoconduction properties are not well-defined in the scientific literature. This work aimed to evaluate samples of homogenous bone grafts in humans by qualitative histological and immunohistochemical analysis. For this, ten pre-selected patients underwent surgical augmentation of bone defects. The homogenous fresh frozen block bone graft was stabilized and fixed by bicortical screws. After six months, the reopening procedure was performed for installation of osseointegrated implants. At this time surgical bone graft samples were removed by means of drill trephine. The samples were fixed in 10% formalin, processed with decalcified paraffin, and stained with hematoxylin and eosin. Immunohistochemistry was performed for the expression of Caspase 3 enzyme. The slides were brought to light microscopy for qualitative histology and immunohistochemistry. The results showed non-vital bone tissue, with few areas of deposition of new bone formation on the amorphous matrix, presence of chronic inflammatory infiltrate with areas of osteomyelitis, and expressive immunolabeling of Caspase 3. Given the methods employed and the results it was concluded that the allograft fresh-frozen block is not incorporated into the recipient bed after a healing period of six months.
Resumo:
Calvaria grafts provide good bone quantity for the reconstruction of the atrophic maxilla, and have lower morbidity and resorption rates when compared to iliac crest. The aim of this paper is to present the technique for obtaining a graft of the skull. Initially, the depth of the osteotomy is determined by a manually conducted bur, which establishes the limits of the structures of the skull (outer table, diploe and inner table), making the removal of bone blocks easier and safer. Thus, osteotomies of the blocks are made with greater security, avoiding the complications inherent to surgical technique. The case that will be presented it is from a male patient of 65 years who refused to submit to the iliac crest graft, opting for the calvaria, despite being bald, that is a contraindication for this treatment modality. A delicate suture associated with placement of titanium mesh to maintain the conformation of the patient's skull in the region of the bone defect, created after removal of the graft, provided a good cosmetic result at the donor site. The use of titanium mesh for re-anatomization of bone defects created in the grafts is well indicated for bald patients.
Resumo:
The techniques of bone reconstruction for atrophic maxillae have been improved in order to promote bone tissue growth in both height and thickness. The grafts performed with use of autogenous bone is considered the gold standard by most researchers, for demonstrating osteogenic capacity and not to promote antigenic response. However, this type of grafting is not possible to get bone tissue in large quantity for extensive renovations. In recent years, alternatives have been researched to overcome the limitations of autogenous bone. Several alternatives have been investigated to supply the disadvantages of autogenous bone grafts. In such studies, allogeneic bone grafts which are obtained from individuals with different genetic load, but from the same species have been extensively used. They can be indicated in cases of arthrosplasty, surgical knee reconstruction, and large bone defects as well as in oral and maxillofacial reconstruction. Besides showing great applicability and biocompatibility, this type of bone is available in unlimited quantities. To rehabilitate atrophic maxillae an option that has been performed with high success rate is the reconstruction with bone graft followed by osseointegrated dental implants to rehabilitate the patient aesthetics and functionally. This paper aims to show the feasibility of allogenic bone as material for reconstruction of atrophic maxilla, and subsequent rehabilitation with metal ceramic fixed prosthesis implant and dental restoration with accompanying three years through literature review and clinical case report.