949 resultados para Chromosomes, Human, Pair 13
Resumo:
Chromosome analysis was performed on samples from 20 Brazilian patients with breast cancer. All the samples were from untreated patients who presented the clinical symptoms for months or years before surgical intervention. Six cases showed axillary lymph node metastases. Clonal chromosome abnormalities were detected in all cases. The numerical alterations most frequently observed involved the loss of chromosomes X, 19, 20, and 22 followed by gain of chromosomes 9 and 8. Among the structural anomalies observed, there was preferential involvement of chromosomes 11, 6, 1, 7, 3, and 12, supporting previous reports that these chromosomes may harbour genes of importance in the development of breast tumors. Two cases with a family history of breast cancer had in common total or partial trisomy 1.
Resumo:
Double minutes (dm) are small chromatin particles of 0.3 microns diameter found only in the metaphase cells of human and murine tumors. Dm are unique cytogenetic structures since their numbers per cell show wide variation. At cell division, dm are retained despite the lack of centromeres. In squash preparations, dm show clustering often in association with chromosomes. Human carcinoma cell line SW613-S18 was found to have large numbers of dm and biological characteristics favorable for mitotic synchronization and chromosome isolation experiments.^ S18 cells were synchronized to mitosis with metabolic and mitotic blocking compounds. Mitotic cells were lysed to release chromosomes and dm from the mitotic spindle and the resulting suspensions were fractionated to enrich for dm. The DNA in enriched fractions was characterized. The reassociation kinetics of dm-DNA driven with placental human DNA was similar to the reassociation curve of labeled placental DNA under similar conditions. In situ hybridization of dm-DNA to tumor and normal metaphase cells showed grain localization over the entire karyotype. Dm-DNA was shown by pulse chase DNA replication experiments to replicate during early and mid S-phase of the cell cycle, but not in late S-phase. In addition, BrdUrd incorporation studies showed that dm-DNA replicates only once during the S-phase. Premature chromosome condensation studies suggest the basis of numerical heterogeneity of dm is nondisjunction, not anomalous or unscheduled DNA replication.^ These data and previous cytochemical banding studies of dm in SW613-S18 indicate that dm-DNA is chromosomal in origin. No evidence of gene amplification was found in the DNA reassociation data. It is likely that dm-DNA represents the pale-staining G-band regions of the human karyotype in this cell line. ^
Resumo:
The occurrence of group G streptococci in cats and evaluation of the recovered organisms as potential human pathogens was investigated. Throat swabs were obtained from 89 cats (47 males and 42 females) and vaginal swabs from 39 female cats. Eighty-three of the examined cats were housed in individual cages at a University Animal Care Facility. Six cats, 2 mature males, 2 mature females and 2 young females were family pets in a rural area. Beta-hemolytic streptococci were recovered from 33 (37%) of the 89 cat throats cultured, and 27 (30.3%) were identified as group G. More males (34%) than females (24%) had throat cultures positive for group G. From the 39 vaginal cultures examined, 24 (61.5%) contained beta-hemolytic streptococci and 23 (58.9%) were identified as group G streptococci. Streptococci were not recovered from the vaginal cultures of the 5 females under 6 months of age.^ Thirty one group G streptococci isolated from cats were compared with 37 isolates of group G obtained from humans (health status or site of origin unknown). More group G cat isolates (81%) produced deoxyribonuclease (DNase) than did the human isolates (36%). The proportion of cat throat and vaginal isolates producing DNase was the same. Production of nicotinamide adenine dinucleotide glycohydrolase (NADase) by group G isolates of human origin was 70%, cat throat isolates 53% and cat vaginal isolates 37%. The Serum Opacity Factor was present in 73% of the cat throat isolates of group G, 43.7% of the cat vaginal isolates and 58.6% of the human isolates. Possession of an anti-phagocytic factor (M protein like substance) demonstrated by the ability to multiply in fresh human blood was greater in the group G from cat throats (46.7%) than from cat vagina (37.5%) or from the human isolates (13.5%). Many of the biochemical characteristics of the group G streptococci of cat origin were more similar to the biochemical characteristics of group A streptococci, than to the characteristics of group G of human origin. The group G streptococci, found in a large number of cats, could be potential human pathogens, as their physiological and biological characteristics are very similar to those of group A, a known human pathogen. ^
Resumo:
Purpose Concentrating Solar Power (CSP) plants based on parabolic troughs utilize auxiliary fuels (usually natural gas) to facilitate start-up operations, avoid freezing of HTF and increase power output. This practice has a significant effect on the environmental performance of the technology. The aim of this paper is to quantify the sustainability of CSP and to analyse how this is affected by hybridisation with different natural gas (NG) inputs. Methods A complete Life Cycle (LC) inventory was gathered for a commercial wet-cooled 50 MWe CSP plant based on parabolic troughs. A sensitivity analysis was conducted to evaluate the environmental performance of the plant operating with different NG inputs (between 0 and 35% of gross electricity generation). ReCiPe Europe (H) was used as LCA methodology. CML 2 baseline 2000 World and ReCiPe Europe E were used for comparative purposes. Cumulative Energy Demands (CED) and Energy Payback Times (EPT) were also determined for each scenario. Results and discussion Operation of CSP using solar energy only produced the following environmental profile: climate change 26.6 kg CO2 eq/KWh, human toxicity 13.1 kg 1,4-DB eq/KWh, marine ecotoxicity 276 g 1,4-DB eq/KWh, natural land transformation 0.005 m2/KWh, eutrophication 10.1 g P eq/KWh, acidification 166 g SO2 eq/KWh. Most of these impacts are associated with extraction of raw materials and manufacturing of plant components. The utilization NG transformed the environmental profile of the technology, placing increasing weight on impacts related to its operation and maintenance. Significantly higher impacts were observed on categories like climate change (311 kg CO2 eq/MWh when using 35 % NG), natural land transformation, terrestrial acidification and fossil depletion. Despite its fossil nature, the use of NG had a beneficial effect on other impact categories (human and marine toxicity, freshwater eutrophication and natural land transformation) due to the higher electricity output achieved. The overall environmental performance of CSP significantly deteriorated with the use of NG (single score 3.52 pt in solar only operation compared to 36.1 pt when using 35 % NG). Other sustainability parameters like EPT and CED also increased substantially as a result of higher NG inputs. Quasilinear second-degree polynomial relationships were calculated between various environmental performance parameters and NG contributions. Conclusions Energy input from auxiliary NG determines the environmental profile of the CSP plant. Aggregated analysis shows a deleterious effect on the overall environmental performance of the technology as a result of NG utilization. This is due primarily to higher impacts on environmental categories like climate change, natural land transformation, fossil fuel depletion and terrestrial acidification. NG may be used in a more sustainable and cost-effective manner in combined cycle power plants, which achieve higher energy conversion efficiencies.
Resumo:
The pseudoautosomal region (PAR) is a segment of shared homology between the sex chromosomes. Here we report additional probes for this region of the mouse genome. Genetic and fluorescence in situ hybridization analyses indicate that one probe, PAR-4, hybridizes to the pseudoautosomal telomere and a minor locus at the telomere of chromosome 9 and that a PCR assay based on the PAR-4 sequence amplifies only the pseudoautosomal locus (DXYHgu1). The region detected by PAR-4 is structurally unstable; it shows polymorphism both between mouse strains and between animals of the same inbred strain, which implies an unusually high mutation rate. Variation occurs in the region adjacent to a (TTAGGG)n array. Two pseudoautosomal probes can also hybridize to the distal telomeres of chromosomes 9 and 13, and all three telomeres contain DXYMov15. The similarity between these telomeres may reflect ancestral telomere-telomere exchange.
A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value.
Resumo:
To obtain a comprehensive genomic profile of presenting multiple myeloma cases we performed high-resolution single nucleotide polymorphism mapping array analysis in 114 samples alongside 258 samples analyzed by U133 Plus 2.0 expression array (Affymetrix). We examined DNA copy number alterations and loss of heterozygosity (LOH) to define the spectrum of minimally deleted regions in which relevant genes of interest can be found. The most frequent deletions are located at 1p (30%), 6q (33%), 8p (25%), 12p (15%), 13q (59%), 14q (39%), 16q (35%), 17p (7%), 20 (12%), and 22 (18%). In addition, copy number-neutral LOH, or uniparental disomy, was also prevalent on 1q (8%), 16q (9%), and X (20%), and was associated with regions of gain and loss. Based on fluorescence in situ hybridization and expression quartile analysis, genes of prognostic importance were found to be located at 1p (FAF1, CDKN2C), 1q (ANP32E), and 17p (TP53). In addition, we identified common homozygously deleted genes that have functions relevant to myeloma biology. Taken together, these analyses indicate that the crucial pathways in myeloma pathogenesis include the nuclear factor-κB pathway, apoptosis, cell-cycle regulation, Wnt signaling, and histone modifications. This study was registered at http://isrctn.org as ISRCTN68454111.
Resumo:
The insertion of a DNA copy of its RNA genome into a chromosome of the host cell is mediated by the viral integrase with the help of mostly uncharacterized cellular cofactors. We have recently described that the transcriptional co-activator LEDGF/p75 strongly interacts with HIV-1 integrase. Here we show that interaction of HIV-1 integrase with LEDGF/p75 is important for viral replication. Using multiple approaches including two-hybrid interaction studies, random and directed mutagenesis, we could demonstrate that HIV-1 virus harboring a single mutation that disrupts integrase-LEDGF/p75 interaction, resulted in defective HIV-1 replication. Furthermore, we found that LEDGF/p75 tethers HIV-1 integrase to chromosomes and that this interaction may be important for the integration process and the replication of HIV-1.
Resumo:
Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such as corpus callosum abnormalities (n = 20), reduced volume of the white matter (WM) (n = 12), ventricular dilatation (n = 9), abnormal increased hyperintensities on T2-weighted images involving posterior periventricular WM (n = 6), and vermis hypoplasia (n = 5). The occipitofrontal circumference varied considerably between >+2SD in five patients and <-2SD in four patients. Among the nine patients with dilatation of the lateral ventricles, six had a duplication involving L1CAM. The only patient harboring bilateral posterior subependymal nodular heterotopia also carried an FLNA gene duplication. We could not demonstrate a correlation between periventricular WM hyperintensities/delayed myelination and duplication of the IKBKG gene. We thus conclude that patients with an Xq28 duplication involving MECP2 share some similar but non-specific brain abnormalities. These imaging features, therefore, could not constitute a diagnostic clue. The genotype-phenotype correlation failed to demonstrate a relationship between the presence of nodular heterotopia, ventricular dilatation, WM abnormalities, and the presence of FLNA, L1CAM, or IKBKG, respectively, in the duplicated segment.
Resumo:
In this study, the evolutionary relationship between human chromosome 16p12-p13 and mouse chromosomes was investigated by determining the order of marker loci in the region and then identifying the chromosomal locations of the homologous loci in mice. Eighteen genes from human 16 were mapped to fifteen subchromosomal regions by a variety of mapping approaches.^ Thirteen of the genes were mapped in the mouse. Linkage analysis with backcross mice and segregation analysis in a mouse - Chinese Hamster Ovary (CHO) somatic cell hybrid panel informative for different regions of mouse genome were used. The results assigned the thirteen genes to three different mouse chromosomes.^ A group of six genes on mouse 16 was found to be closely linked to Scid. The order of Myh11 and Mrp remains ambiguous since no recombination was detected in backcross analysis. Their relative position in human is also uncertain since they were shown to be very close to each other. For the other mouse loci, an unambiguous gene order could be determined and was found to be identical to that in human. Therefore, they comprise a new conserved linkage group between the two species. The orientation of the group was inverted relative to the centromeres, i.e. the proximal loci in one species become distal in another. The size of the group was estimated to be from 4.4 to 8 Mb and 10 to 32 cM in human. In mouse, it was about 21 cM in the backcross analysis. The two boundaries of the conserved linkage were defined within a 1 Mb range. It is now possible to predict the locations of mouse homologs for some human disease genes based on their locations on human 16p.^ The six human 16p genes that map to MMU7 showed a different gene order in mouse than in human. No recombination was found between Crym and Umod while Crym was distal to D16S79A and proximal to D16S92. The location of Stp and Cdr2 with respect to the above four loci was not determined since they were not mapped in the same set of backcross mice. These genes greatly expanded an existing conserved synteny group between the human 16p12-p13 region and the MMU7. It now consists of eleven loci that span a region of probably more than 10 Mb in human. The gene order derived from this study provided further evidence for chromosomal rearrangements within the conserved synteny. (Abstract shortened by UMI.) ^
Resumo:
Cross-species fluorescence in-situ hybridization (Zoo-FISH) was performed on cattle metaphase spreads using Homo sapiens X chromosome (HSAX) painting probes specific for the p- and q-arms to identify the cytogenetic location of a chromosome breakpoint between HSAX and the Bos taurus X chromosome (BTAX). The existence of a breakpoint is strongly suggested by recent radiation hybrid and FISH mapping results. Hybridization probes were generated by microdissection of HSAX p- and q-arms using the contact-free technology of Laser Microdissection and Pressure Catapulting (LMPC), amplification of the isolated chromosome material by DOP-PCR, and labelling of the PCR products with digoxigenin in a secondary PCR. Independent Zoo-FISH of the two painting probes on bovine metaphase chromosomes (detected by antidigoxigenin-fluorescein) resulted in clear hybridization signals on BTAX. A breakpoint was identified between HSAXp and HSAXq on BTAX, and narrowed down between the G-bands BTAXq25 and BTAXq26. The assumed centromere transposition between HSAX and BTAX associated with the rearranged chromosome segments is supported by cytogenetic assignments of the genes BGN and G6PD to BTAX.
Resumo:
Comparative mapping data on evolutionary conserved coding sequences and synteny maps between human and cattle are insufficient to define the extent and distribution of conserved segments between these two species, because the order of loci is often rearranged. A 5000-rad cattle whole-genome radiation hybrid (WG-RH) panel was constructed to provide high-resolution comparative maps and also to integrate linkage maps of microsatellites with evolutionary conserved genes and transcripts in a single ordered map. We used the WG-RH panel to construct radiation hybrid maps of bovine Chromosomes (Chrs) 15 and 29 (BTA15 and BTA29), integrating microsatellites from published linkage maps with selected genes. The comprehensive map of BTA15 consists of 24 markers. 13 of which were placed in the framework map. Eleven molecular markers compose the comprehensive map of BTA29. seven of which were placed in the framework map. We identified the homologous regions between bovine Chr 15 (BTA15) and human Chrs 5 and 11 (HSA5 and HSA11), as well as between BTA29 and HSA11, the present study demonstrates that WG-RH mapping is an efficient method for integrating multiple genetic maps into one map and for incorporating monomorphic Type I loci into ordered maps for comparison between species.
Resumo:
The evolutionary function of X chromosome inactivation is thought to be dosage compensation. However, there is, at present, little evidence to suggest that most X chromosome-linked genes require such compensation. Another view--that X chromosome inactivation may be related to sex determination--is examined here. Consider a hypothetical DNA sequence regulating a major structural gene concerned with the determination of maleness. If this regulatory sequence occurs in both X and Y chromosomes and if its copy number in the Y chromosome is significantly greater than in the X chromosome, then the male-determining properties of the Y chromosome could be attributed to this higher copy number. On the other hand, if the Y chromosome has the same copy number of this sequence as the X chromosome, it is difficult to see how determination of two sexes would occur under such circumstances because XX and XY genomes would then be indistinguishable in this regard. Such a situation seems to occur in the human species with respect to the banded krait minor satellite, a repetitious DNA sequence associated with sex determination. This apparent difficulty may be resolved if X chromosome inactivation renders regulatory as well as structural genes nonfunctional and thereby brings about a significant reduction in the effective copy number of X chromosome-linked DNA sequences concerned with sex determination. It is suggested that X chromosome inactivation brings about, in this manner, a critical inequality between XX and XY embryos and that sex determination in humans is a consequence of this inequality. An analogous situation appears to exist in certain insects in which inactivation of a haploid set of chromosomes (and presumably, therefore, a 50% reduction in the effective copy number of most genes) is associated with maleness. If this line of reasoning is correct, it would suggest that sex determination may be the primary function of X chromosome inactivation.
Resumo:
By employing a procedure that combines ELISA and photoacoustic spectroscopy, we have examined the content of 5-methylcytosine (m(5)C) in DNA of individuals who differed from one another in the number of X chromosomes in their genomes. The results show that the human inactive X chromosome (Xi) contains very high amounts of this modified nucleotide. We estimate that in the 46,XX female there is more m(5)C in Xi (similar to3.6 x 10(7)) than in all the remaining chromosomes put together (similar to2.1 x 10(7)). Our results also suggest that nearly one-fifth of all cytosines in Xi are methylated and that, in addition to CpG methylation, there is extensive non-CpG methylation as well.
Resumo:
http://www.jstage.jst.go.jp/
Resumo:
Forty chromosome-specific paint probes of the domestic dog (Canis familiaris, 2n = 78) were used to delineate conserved segments on metaphase chromosomes of the American mink (Mustela vison, 2n = 30) by fluorescence in situ hybridisation. Half of the 38 canine autosomal probes each painted one pair of homologous segments in a diploid mink metaphase, whereas the other 19 dog probes each painted from two to five pairs of discrete segments. In total, 38 canine autosomal paints highlighted 71 pairs of conserved segments in the mink. These painting results allow us to establish a complete comparative chromosome map between the American mink and domestic dog. This map demonstrates that extensive chromosome rearrangements differentiate the karyotypes of the dog and American mink. The 38 dog autosomes could be reconstructed from the 14 autosomes of the American mink through at least 47 fissions, 25 chromosome fusions, and six inversions. Furthermore, comparison of the current dog/mink map with the published human/dog map discloses 23 cryptic intrachromosomal rearrangements in 10 regions of conserved synteny in the human and American mink genomes and thus further refined the human/mink comparative genome map. Copyright (C) 2000 S. Karger AG, Basel.