971 resultados para Chromosomal Instability
Resumo:
Little is known about the relation between the genome organization and gene expression in Leishmania. Bioinformatic analysis can be used to predict genes and find homologies with known proteins. A model was proposed, in which genes are organized into large clusters and transcribed from only one strand, in the form of large polycistronic primary transcripts. To verify the validity of this model, we studied gene expression at the transcriptional, post-transcriptional and translational levels in a unique locus of 34kb located on chr27 and represented by cosmid L979. Sequence analysis revealed 115 ORFs on either DNA strand. Using computer programs developed for Leishmania genes, only nine of these ORFs, localized on the same strand, were predicted to code for proteins, some of which show homologies with known proteins. Additionally, one pseudogene, was identified. We verified the biological relevance of these predictions. mRNAs from nine predicted genes and proteins from seven were detected. Nuclear run-on analyses confirmed that the top strand is transcribed by RNA polymerase II and suggested that there is no polymerase entry site. Low levels of transcription were detected in regions of the bottom strand and stable transcripts were identified for four ORFs on this strand not predicted to be protein-coding. In conclusion, the transcriptional organization of the Leishmania genome is complex, raising the possibility that computer predictions may not be comprehensive.
Resumo:
Chromosomal rearrangements are proposed to promote genetic differentiation between chromosomally differentiated taxa and therefore promote speciation. Due to their remarkable karyotypic polymorphism, the shrews of the Sorex araneus group were used to investigate the impact of chromosomal rearrangements on gene flow. Five intraspecific chromosomal hybrid zones characterized by different levels of karyotypic complexity were studied using 16 microsatellites markers. We observed low levels of genetic differentiation even in the hybrid zones with the highest karyotypic complexity. No evidence of restricted gene flow between differently rearranged chromosomes was observed. Contrary to what was observed at the interspecific level, the effect of chromosomal rearrangements on gene flow was undetectable within the S. araneus species.
Resumo:
BACKGROUND: The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure. RESULTS: We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae. CONCLUSION: The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.
Resumo:
Robertsonian (Rb) fusions received large theoretical support for their role in speciation, but empirical evidence is often lacking. Here, we address the role of Rb rearrangements on the genetic differentiation of the karyotypically diversified group of shrews, Sorex araneus. We compared genetic structure between 'rearranged' and 'common' chromosomes in pairwise comparisons of five karyotypic taxa of the group. Considering all possible comparisons, we found a significantly greater differentiation at rearranged chromosomes, supporting the role of chromosomal rearrangements in the general genetic diversification of this group. Intertaxa structure and distance were larger across rearranged chromosomes for most of the comparisons, although these differences were not significant. This last result could be explained by the large variance observed among microsatellite-based estimates. The differences observed among the pairs of taxa analysed support the role of both the hybrid karyotypic complexity and the level of evolutionary divergence.
Resumo:
What determined the volatility of asset prices in Germany between thewars? This paper argues that the influence of political factors has beenoverstated. The majority of events increasing political uncertainty hadlittle or no effect on the value of German assets and the volatility ofreturns on them. Instead, it was inflation (and the fear of it) that islargely responsible for most of the variability in asset returns.
Resumo:
Historical references to the emergence of the current concept of ADHD typically cite descriptions from medical textbooks by Weikard (1775) and Crichton (An inquiry into the nature and origin of mental derangement: Comprehending a concise system of the physiology and pathology of the human mind and a history of the passion and their affects. Cardell Jr and Davies, Londres, 1798) on attention disorders, poems of Hoffman on hyperactive and impulsive behaviors (Der Struwwelpeter. Frankfurt am Main, Literarische Anstalt, 1843), as well as the work of Still (Lancet 1:1008-1012, 1077-1082, 1163-1168, 1902a, Lancet 159(4102):1008-1013, 1902b, Lancet 159(4103):1077-1082, 1902c, Lancet 159(4104):1163-1168, 1902d) on impulsive behaviors and defective moral regulation of behavior. The notion of "instability" developed by French physicians between 1887 and 1910 is rarely mentioned and often ignored. Writings from this period show that in France, the emergence of the concept of ADHD according to modern terminology comes from the notion of "mental instability" introduced in the 1890s under the leadership of Désiré-Magloire Bourneville at the Hospital Bicêtre in Paris, based on his observations of children and adolescents who had been labeled "abnormal" and placed in medical and educational institutions. In the early twentieth century, elaborating on the observations of Bourneville, Jean Phillipe and Georges Paul-Boncour showed the presence of a subgroup of "unstable" children who suffered from a disease entity in its own right within the population of "abnormal" schoolchildren (the terminology of the time). This new pathological entity included symptoms of hyperactivity, impulsivity and inattention, corresponding to today's classic triad of ADHD symptoms. While noting the lack of behavioral inhibition, clinical descriptions of Bourneville, Philip and Paul-Boncour also considered the notion of "moral disorder" which at that time played an important role in psychopathology. This resulted in some degree of confusion between impulsive symptoms and major behavioral disturbances often associated with ADHD.
Resumo:
Cerebral involvement is an uncommon complication of multiple myeloma. We report on a 64-year-old man hospitalized for a partial seizure. MRI showed two intracerebral lesions, which proved to be plasmacytomas. After complete staging, we retained the diagnosis of immunoglobulin G lambda-type multiple myeloma with CNS involvement. Cytogenetic analysis of plasma cells detected a deletion in the p53 gene at 17p13.1. Despite cranial radiotherapy and systemic chemotherapy, the patient's disease progressed rapidly and he died five months after diagnosis. What makes this case unusual is that overt multiple myeloma had been absent before cerebral involvement was discovered. It confirms the extremely poor prognosis of patients with CNS myeloma even in the presence of aggressive treatment. Cytogenetic abnormalities could be a marker of chromosomal and genetic instability, conferring to multiple myeloma a more aggressive profile.
Resumo:
The objective of this study was to evaluate the prenatal detection of chromosomal abnormalities by fetal ultrasonographic examination in a large database provided by 19 Registries of Congenital Anomalies from 11 European countries. This study included 1738 cases of chromosomal abnormalities, liveborn, stillborn or termination of pregnancy regardless of maternal age from a population of 664,340 births during the period 1996 - 1998. The most frequent chromosomal anomalies were Down syndrome (n=1050), trisomy 18 (n=191), Turner syndrome (n=125), trisomy 13 (n=86), and triploidy (n=56). Fetal ultrasonographic examination resulted in the prenatal detection of 37.7% of the chromosomal abnormalities, thereby resulting in a reduction of 28.6% in their prevalence at birth due to terminations of pregnancy. The detection rate by ultrasound examination varied according to local policies of prenatal diagnosis : it was lower in countries where routine scan were not performed and higher in countries in which at least one routine anomaly scan during the second trimester of pregnancy was performed. The ultrasound detection varied according to the specific chromosomal anomaly and was lowest for Klinefelter syndrome (5.7%) and highest for triploidy (78.6%). For Down syndrome it was 26.4%. Termination of pregnancy was performed in 75.9% of the cases. Among the 655 cases detected by ultrasound, the most frequent ultrasound signs by category of chromosomal abnormalities were analysed. This study shows that ultrasound screening is an important tool in the prenatal detection of chromosomal abnormalities in Europe, leading to a significant reduction in the prevalence of livebirth children with chromosomal anomalies.
Resumo:
Defects in the interleukin-2 receptor gamma (IL-2R gamma) chain in the man result in an X-linked severe combined immunodeficiency, SCIDX1, characterized by an absence of T-cell differentiation. This phenotype may result from pertubations in IL-2, IL-4-, IL-7- or IL-15-mediated signaling, as the IL-2R gamma chain forms an integral component of these receptor systems. We have isolated and characterized cDNA and genomic clones for the murine IL-2R gamma. The gene (Il2rg) is well conserved between mouse and man with respect to overall structure and size, and contains regions of high conservation in the promoter region as well. Il2rg maps to mouse X chromosome region 40, in a region of synteny with human Xq12-13.1. We have also explored the expression of the IL-2R gamma during thymocyte development. IL-2R gamma transcripts are detected in the earliest thymocyte precursor cells and persist throughout intrathymic development into the mature peripheral compartment. Genomic clones for the murine IL-2R gamma will allow for further studies on the regulation and function of this gene in vivo.
Resumo:
ABSTRACT The role of chromosomal rearrangements in the speciation process is much debated and many theoretical models have been developed. The shrews of the Sorex araneus group offer extraordinary opportunities to study the relationship between chromosomal variation and speciation. Indeed, this group of morphologically very similar species received a great deal of attention due to its karyotypic variability, which is mainly attributed to Robertsonian fusions. To explore the impact of karyotypic changes on genetic differentiation, we first studied the relationship between genetic and karyotypic structure among Alpine species and among chromosome races of the S. araneus group using Bayesian admixture analyses. The results of these analyses confirmed the taxonomic status of the studied species even though introgression can still be detected between species. Moreover, the strong spatial sub-structure highlighted the role of historical factors (e.g. geographical isolation) on genetic structure. Next, we studied gene flow at the chromosome level to address the question of the impact of chromosomal rearrangements on genetic differentiation. We used flow sorted chromosomes from three different karyotypic taxa of the S. araneus group to map microsatellite markers at the chromosóme arm level. We have been able to map 24 markers and to show that the karyotypic organisation of these taxa is well conserved, which suggests that these markers can be used for further inter-taxa studies. A general prediction of chromosomal speciation models is that genetic differentiation between two taxa should be larger across rearranged chromosomes than across chromosomes common to both taxa. We combined two approaches using mapped microsatellites to test this prediction. First, we studied the genetic differentiation among five shrew taxa placed at different evolutionary levels (i.e. within and among species). In this large scale study, we detected an overall significant difference in genetic structure between rearranged vs. common chromosomes. Moreover, this effect varied among pairwise comparisons, which allowed us to differentiate the role of the karyotypic complexity of hybrids and of the evolutionary divergence between taxa. Secondly, we compared the levels of gene flow measured across common vs. rearranged chromosomes in two karyotypically different hybrid zones (strong vs. low complexity of hybrids), which show similar levels of genetic structure. We detected a significantly stronger genetic structure across rearranged chromosomes in the hybrid zone showing the highest level of hybrid complexity. The large variance observed among loci suggested that other factors, such as the position of markers within the chromosome, also certainly affects genetic structure. In conclusion, our results strongly support the role of chromosomal rearrangements in the reproductive barrier and suggest their importance in speciation process of the S. araneus group. RESUME Le rôle des réarrangements chromosomiques dans les processus de spéciation est fortement débattu et de nombreux modèles théoriques ont été développés sur le sujet. Les musaraignes du groupe Sorex araneus présentent de nombreuses opportunités pour étudier les relations entre les variations chromosomiques et la spéciation. En effet, ce groupe d'espèces morphologiquement très proches a attiré l'attention des chercheurs en raison de sa variabilité caryotypique principalement attribuée à des fusions Robertsoniennes. Pour explorer l'impact des changements caryotypiques sur la différenciation génétique, nous avons tout d'abord étudié les relations entre la structure génétique et caryotypique de races chromosomiques et d'espèces alpine du groupe S. araneus en utilisant des analyses Bayesiennes d' « admixture ». Les résultats de ces analyses ont confirmé le statut taxonomique des espèces étudiées bien que nous ayons détecté de l'introgression entre espèces. L'observation d'une sous structure spatiale relativement forte souligne l'importance des facteurs historiques (telle que l'isolation géographique) sur la structure génétique de ce groupe. Ensuite, nous avons étudié le flux de gène au niveau des chromosomes pour aborder de manière directe la question de l'impact des réarrangements chromosomiques sur la différenciation génétique. En conséquence, nous avons utilisé des tris de chromosomes de trois taxons du groupe S. araneus pour localiser des marqueurs microsatellites au niveau du bras chromosomique. Au cours de cette étude, nous avons pu localiser 24 marqueurs et montrer une forte conservation dans l'organisation du caryotype de ces taxa. Ce résultat suggère que leur utilisation est appropriée pour des études entre taxa. Une prédiction générale à tous les modèles de spéciation chromosomique correspond à la plus grande différenciation génétique des chromosomes réarrangés que des chromosomes communs. Nous avons combiné deux approches utilisant des microsatellites localisés au niveau du bras chromosomique pour tester cette prédiction. Premièrement, nous avons étudié la différenciation génétique entre cinq taxa du groupe S. araneus se trouvant à des niveaux évolutifs différents (i.e. à l'intérieur et entre espèce). Au cours de cette étude, nous avons détecté une différenciation globale significativement plus élevée sur les chromosomes réarrangés. Cet effet varie entre les comparaisons, ce qui nous a permis de souligner le rôle de la complexité caryotypique des hybrides et du niveau de divergence évolutive entre taxa. Deuxièmement, nous avons comparé le flux de gènes des chromosomes communs et réarrangés dans deux zones d'hybridation caryotypiquement différentes (forte vs. Faible complexité des hybrides) mais présentant un niveau de différenciation génétique similaire. Ceci nous a permis de détecter une structure génétique significativement plus élevée sur les chromosomes réarrangés au centre de la zone d'hybridation présentant la plus grande complexité caryotypic. La forte variance observée entre loci souligne en outre le fait que d'autres facteurs, tel que la position du marqueur sur le chromosome, affectent probablement aussi la structure génétique mesurée. En conclusion, nos résultats supportent fortement le rôle des réarrangements chromosomiques dans la barrière reproductive entre espèces ainsi que leur importance dans les processus de spéciation des musaraignes du groupe S. araneus.