335 resultados para Chlamydia muridarum
Resumo:
Chlamydial attachment to columnar conjunctival or urogenital epithelial cells is an initial and critical step in the pathogenesis of chlamydial mucosal infections. The chlamydial major outer membrane protein (MOMP) has been implicated as a putative chlamydial cytoadhesin; however, direct evidence supporting this hypothesis has not been reported. The function of MOMP as a cytoadhesin was directly investigated by expressing the protein as a fusion with the Escherichia coli maltose binding protein (MBP-MOMP) and studying its interaction with human epithelial cells. The recombinant MBP-MOMP bound specifically to HeLa cells at 4 degrees C but was not internalized after shifting the temperature to 37 degrees C. The MBP-MOMP competitively inhibited the infectivity of viable chlamydiae for epithelial cells, indicating that the MOMP and intact chlamydiae bind the same host receptor. Heparan sulfate markedly reduced binding of the MBP-MOMP to cells, whereas chondroitin sulfate had no effect on binding. Enzymatic treatment of cells with heparitinase but not chondroitinase inhibited the binding of MBP-MOMP. These same treatments were also shown to reduce the infectivity of chlamydiae for epithelial cells. Mutant cell lines defective in heparan sulfate synthesis but not chondroitin sulfate synthesis showed a marked reduction in the binding of MBP-MOMP and were also less susceptible to infection by chlamydiae. Collectively, these findings provide strong evidence that the MOMP functions as a chlamydial cytoadhesin and that heparan sulfate proteoglycans are the host-cell receptors to which the MOMP binds.
Resumo:
An association of Chlamydia pneumoniae with atherosclerosis of coronary and carotid arteries and aorta has been found by seroepidemiology and by demonstration of the organism in atheromata. Age-matched control tissue from persons without atherosclerosis was usually not available. We studied autopsy tissue from young persons, many with no atherosclerosis, to determine whether C. pneumoniae is present in atheroma in young persons with early atherosclerosis and to compare the findings in age- and sex-matched persons without atherosclerosis. A left anterior descending coronary artery sample, formalin-fixed, from 49 subjects, 15-34 years of age, from the multicenter study called Pathobiological Determinants of Atherosclerosis in Youth (PDAY), was examined by immunocytochemistry and the polymerase chain reaction (PCR) for the presence of C. pneumoniae and by PCR for cytomegalovirus. A hematoxylin/eosin-stained section was used to determine disease present in the studied sample. Seven of the artery samples were found to have atheromatous plaque, 11 had intimal thickening, and 31 had no lesions. Eight of the samples were positive for C. pneumoniae by immunocytochemistry (n = 7) and/or PCR (n = 3). Six of the 7 (86%) atheroma, 2 of the 11 (18%) with intimal thickening, and none of the 31 normal-appearing coronary samples were positive. Four were positive by PCR for cytomegalovirus, 2 from diseased arteries and 2 from normal arteries. Examination of the adjacent left coronary artery sample with a fat stain found abnormalities in 25 of the patients, but 19 still showed no evidence of atherosclerosis as a result of either examination. Thus, C. pneumoniae is found in coronary lesions in young adults with atherosclerosis but is not found in normal-appearing coronary arteries of both persons with and without other evidence of atherosclerosis.
Resumo:
Chlamydia trachomatis undergoes its entire life cycle within an uncharacterized intracellular vesicle that does not fuse with lysosomes. We used a fluorescent Golgi-specific probe, (N-[7-(4-nitrobenzo-2-oxa-1,3-diazole)]) aminocaproylsphingosine (C6-NBD-Cer), in conjunction with conventional fluorescence or confocal microscopy to identify interactions between the Golgi apparatus and the chlamydial inclusion. We observed not only a close physical association between the Golgi apparatus and the chlamydial inclusion but the eventual presence of a metabolite of this fluorescent probe associated with the chlamydiae themselves. Sphingomyelin, endogenously synthesized from C6-NBD-Cer, was specifically transported to the inclusion and incorporated into the cell wall of the intracellular chlamydiae. Incorporation of the fluorescent sphingolipid by chlamydiae was inhibited by brefeldin A. Chlamydiae therefore occupy a vesicle distal to the Golgi apparatus that receives anterograde vesicular traffic from the Golgi normally bound for the plasma membrane. Collectively, the data suggest that the chlamydial inclusion may represent a unique compartment within the trans-Golgi network.
Resumo:
Las Clamidias son bacterias patógenas de los animales de producción, de vida silvestre y de compañía. Además de las pérdidas económicas que producen las infecciones en los planteles de producción bovina, ovina, caprina, porcina y aves de corral, la mayoría de las especies tienen importancia zoonótica, pudiendo dar origen a infecciones graves, potencialmente letales en el ser humano. El orden Chlamydiales está integrado por bacterias que actúan como parásitos intracelulares obligados que desarrollan su ciclo de vida únicamente dentro de inclusiones citoplasmáticas. En este orden se encuentra la familia Chlamydiaceae que comprende dos géneros, Chlamydia y Chlamydophila; y las especies, Chlamydia trachomatis, C. suis, C. muridarum, Chlamydophila psittaci, C. abortus, C. felis, C. caviae, C. pecorum, y C. pneumoniae. C. psittaci causa psitacosis o clamidiosis aviar. En Argentina, los primeros casos clínicos de psitacosis fueron reportados en 1929. Los criadores de aves y quienes las poseen como mascotas, representan el grupo de mayor riesgo; pero también las personas que trabajan en pajarerías y aquellas que por su empleo se ven expuestas a contraer la enfermedad (empleados en peladeros donde se carnean y procesan pollos y otras aves para consumo, veterinarios, empleados de zoológicos, etc.). La infección en humanos se presenta como una neumonía severa; con fiebre alta, escalofríos, dolor de cabeza, mialgia y dificultad respiratoria. Ocasionalmente puede presentarse vómitos, dolor abdominal, diarrea y complicaciones como miocarditis, endocarditis, encefalitis, ictericia y fallas multiorgánicas, que pueden ser fatales sino se le administra el tratamiento adecuado. La infección en las mujeres embarazadas puede producir neumonía, hepatitis, insuficiencia renal, sepsis, parto prematuro y muerte fetal. Existen más de 465 especies de aves en las que se registró C. psittaci, incluyendo ornamentales, de corral, silvestres, acuáticas y palomas. Las patologías que pueden producir en estos animales son neumonitis, conjuntivitis, encefalomielitis, placentopatías, fetopatías, anorexia, diarrea e infecciones persistentes asintomáticas u oligosintomáticas. En bovinos, C. pecorum, C. abortus y C. psittaci producen infecciones respiratorias y genitales; que se presentan como cuadros de enteritis, artritis, encefalomielitis, endometritis e hipofertilidad. En Argentina, la infección clamidial en el ganado caprino fue asociada a daños en el tejido uterino, abortos, partos prematuros y crías débiles. En equinos, C. psittaci y C. pneumoniae producen abortos y desórdenes respiratorios, con un gran impacto en ganadería que redunda en pérdidas económicas. Considerando que existen escasos estudios eco-epidemiológicos y clínicos que reporten el estado de situación de estas infecciones en nuestro medio, es que el presente trabajo propone actualizar y profundizar el conocimiento de las especies de Clamidias de importancia médico-veterinaria presentes en la provincia de Córdoba, Argentina. El desarrollo de este proyecto aportará la implementación de técnicas que mejorarán el diagnóstico microbiológico, confirmarán los cuadros clínicos; y por lo tanto contribuirá al conocimiento de estos agentes infecciosos en nuestra región. Esta información es indispensable para los organismos responsables de la Salud Pública (Ministerios de Salud y Educación, Municipios, etc.) para que puedan obrar en consecuencia y generar sistemas de alerta temprana, tomar medidas de prevención y medidas de control frente a la presencia de un brote epidémico por alguna cepa clamidial.
Resumo:
Chlamydia pneumoniae is an obligate intracellular respiratory pathogen that causes 10% of community-acquired pneumonia and has been associated with cardiovascular disease. Both whole-genome sequencing and specific gene typing suggest that there is relatively little genetic variation in human isolates of C. pneumoniae. To date, there has been little genomic analysis of strains from human cardiovascular sites. The genotypes of C. pneumoniae present in human atherosclerotic carotid plaque were analysed and several polymorphisms in the variable domain 4 (VD4) region of the outer-membrane protein-A (ompA) gene and the intergenic region between the ygeD and uridine kinase (ygeD-urk) genes were found. While one genotype was identified that was the same as one reported previously in humans (respiratory and cardiovascular), another genotype was found that was identical to a genotype from non-human sources (frog/koala).
Resumo:
The medically significant genus Chlamydia is a class of obligate intracellular bacterial pathogens that replicate within vacuoles in host eukaryotic cells termed inclusions. Chlamydia's developmental cycle involves two forms; an infectious extracellular form, known as an elementary body (EB), and a non-infectious form, known as the reticulate body (RB), that replicates inside the vacuoles of the host cells. The RB surface is covered in projections that are in intimate contact with the inclusion membrane. Late in the developmental cycle, these reticulate bodies differentiate into the elementary body form. In this paper, we present a hypothesis for the modulation of these developmental events involving the contact-dependent type III secretion (TTS) system. TTS surface projections mediate intimate contact between the RB and the inclusion membrane. Below a certain number of projections, detachment of the RB provides a signal for late differentiation of RB into EB. We use data and develop a mathematical model investigating this hypothesis. If the hypothesis proves to be accurate, then we have shown that increasing the number of inclusions per host cell will increase the number of infectious progeny EB until some optimal number of inclusions. For more inclusions than this optimum, the infectious yield is reduced because of spatial restrictions. We also predict that a reduction in the number of projections on the surface of the RB (and as early as possible during development) will significantly reduce the burst size of infectious EB particles. Many of the results predicted by the model can be tested experimentally and may lead to the identification of potential targets for drug design. © Society for Mathematical Biology 2006.
Resumo:
AIMS: To investigate multiple techniques for the preparation of solid tissue for polymerase chain reaction (PCR) analysis, and to identify the most simple techniques for routine use in the laboratory. METHODS: Techniques for the preparation of arterial tissue samples including homogenisation, ultrafiltration, and treatments involving proteinase K, Gene Clean, lectin, and Fe3+ specific chelators were evaluated using the PCR to amplify both Chlamydia pneumoniae and human DNA. RESULTS: Treatment with either Gene-Clean or lectin and the Fe3+ specific chelator deferoxamine mesylate removed PCR inhibitors from tissue homogenates. Homogenisation followed by GeneClean treatment resulted in the amplification of C pneumoniae DNA from within a section of atherosclerotic carotid artery, implying that C pneumoniae elementary bodies had been disrupted. In eight further clinical samples from patients not known to have C pneumoniae infection, human DNA was amplified and no cross contamination was observed between samples. These samples contained no evidence of C pneumoniae by PCR. CONCLUSIONS: A simple preparation of solid tissue for PCR analysis, involving homogenisation followed by GeneClean treatment has been developed, and is effective for the amplification of both C pneumoniae and human DNA.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT