989 resultados para Chemical analysis
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The application of on-line C30-reversed-phase high-pressure liquid chromatography-nuclear magnetic resonance spectroscopy is described for the analysis of tetraglycosylated flavonoids in aqueous and hydroalcoholic extracts of the leaves of Maytenus aquifolium (Celastraceae). Triacontyl stationary phases showed adequate separation for on-line 1H-NMR measurements at 600 MHz and allowed the characterisation of these flavonoids by detection of both aromatic and anomeric proton signals. Copyright (C) 2000 John Wiley and Sons, Ltd.
Resumo:
The effect of combining the photocatalytic processes using TiO 2 and the photo-Fenton reaction with Fe3+ or ferrioxalate as a source of Fe2+ was investigated in the degradation of 4-chlorophenol (4CP) and dichloroacetic acid (DCA) using solar irradiation. Multivariate analysis was used to evaluate the role of three variables: iron, H2O2 and TiO2 concentrations. The results show that TiO2 plays a minor role when compared to iron and H2O2 in the solar degradation of 4CP and DCA in the studied conditions. However, its presence can improve TOC removal when H2O2 is totally consumed. Iron and peroxide play major roles, especially when Fe(NO3)3 used in the degradation of 4CP. No significant synergistic effect was observed by the addition of TiO 2 in this process. On the other hand, synergistic effects were observed between FeOx and TiO2 and between H 2O2 and TiO2 in the degradation of DCA. © IWA Publishing 2004.
Resumo:
The steam reforming is one of most utilized process of hydrogen production because of its high production efficiencies and its technological maturity. The use of ethanol for this purpose is a interesting option because this is a renewable and less environmentally offensive fuel. The objective of this study is evaluate the physical-chemical, thermodynamic and environmental analyses of steam reforming of ethanol. whose objective is to produce 0.7 Nm3/h of hydrogen to be used by a PEMFC of l kW. In this physical-chemical analysis, a global reaction of ethanol was considered. That is, the superheated ethanol and steam, at high temperatures, react to produce hydrogen and carbon dioxide. Beyond it's the simplest form to study the steam reforming of ethanol to hydrogen production, it's the case where occurs the highest production of hydrogen (the product to be used by fuel cells) and carbon dioxide, to be eliminated. But this reaction isn't real and depends greatly on the thermodynamic conditions of reforming, technical features of reformer system and catalysts. Other products generally formed (but not investigated in this study) are methane, carbon monoxide, among others. It was observed that the products is commonly produced in the moment when the reaction attains temperatures about 206°C (below this temperature, the reaction trend to the reaetants, that is, from hydrogen and carbon dioxide to steam and ethanol) and the advance degree of this reaction increases when the temperature of reaction also increases and when its pressure decreases. It's suggested reactions at about 600°C or higher. However, when the temperature attains 700°C, the stability of this reaction is occurred, that is, the production of reaction productions attains to the limit, that is the highest possible production. In temperatures above 700°C, the use of energy is very high for produce more products, having higher costs of production that the suggested temperature. The indicated pressure is 1 atm., a value that allows a desirable economy of energy that would also be used for pressurization or depressurization of steam reformer. In exergetic analysis, it's seem that the lower irreversibililies occur when the pressure of reactions are lower. However, the temperature changes don't affect significantly the irreversibilites. Utilizing the obtained results from this analysis, it was concluded that the best thermodynamic conditions for steam reforming of ethanol is the same conditions suggested in the physical-chemical analysis. The exergetic and first law efficiencies are high on the thermodynamie conditions studied.
Resumo:
Titanium alloys of Ti-Si-B system were manufactured by blended elemental powder method using Ti, Si and B powders as starting materials. It was found that uniaxial and isostatic pressing followed by hot pressing at around 1000°C, for 20 minutes, provided good densification of such alloys. The physicochemical studies were performed by means of scanning electron microscopy, X-ray diffraction, atomic force microscopy and microindentation/wear tests. The investigations revealed a multiphase microstructure formed mainly by α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. The phase transformations after pressureless sintering at 1200°C was also studied by X-ray diffraction for the Ti-18Si-6B composition. As stated in some other researches, these intermetallics in the α-titanium matrix provide high wear resistance and hardness, with the best wear rate of 0.2 mm3/N.m and the highest hardness of around 1300 HV. © (2012) Trans Tech Publications, Switzerland.
Resumo:
Purpose: The objectives of this study were to investigate the flexural strength (FS) and chemical interaction between 2-tert-butylaminoethyl methacrylate (TBAEMA) and a denture base acrylic resin. Materials and Methods: Specimens were divided into five groups according to the concentration of TBAEMA incorporated in acrylic resin Onda-Cryl (0%, 1%, 2%, 3%, 4%) and were submitted to Fourier transform infrared spectroscopy (FTIR), electron spectroscopy for chemical analysis (XPS-ESCA), and differential scanning calorimetry (DSC) analyses. FS of the specimens was tested, and results were analyzed by ANOVA/Tukey's test (α < 0.05). Results: Different nitrogen ratios were observed on specimens' surfaces: 0.36%, 0.54%, 0.35%, and 0.20% for groups 1%, 2%, 3%, and 4%, respectively. FTIR indicated copolymerization of acrylic resin and TBAEMA, and DSC results demonstrated a decrease in glass transition temperature (Tg). Significant differences were found for FS (p < 0.05). The mean values were 91.1 ± 5.5,A 77.0 ± 13.1,B 67.2 ± 12.5,B 64.4 ± 13.0,B and 67.2 ± 5.9B MPa for groups 0%, 1%, 2%, 3% and 4%, respectively (same superscript letters indicate no significant difference). Conclusions: The incorporation of TBAEMA in acrylic resin resulted in copolymerization and the presence of amine groups on specimens' surfaces, and in decreases of Tg and FS. © 2012 by the American College of Prosthodontists.
Resumo:
Nesse trabalho, foram caracterizados, pela primeira vez, azulejos históricos portugueses do Centro Histórico de São Luís (CHSL) do Maranhão. A caracterização foi realizada através dos ensaios de microscopia ótica, difração de raios X (DRX) e análise química, visando ao uso dessa informação para a determinação das possíveis matérias-primas utilizadas na sua fabricação, bem como a provável temperatura de queima desses materiais. Os resultados mostraram que a microestrutura desses materiais é constituída por poros de tamanhos variados, apresentando incrustações de calcita e grãos de quartzo de tamanhos inferiores a 500 µm, distribuídos numa matriz de cor rosa-amarelo, onde foram identificadas, por DRX, as fases minerais calcita, gelhenita, wollastonita, quartzo e amorfo. A partir da informação obtida, é possível inferir que as matérias-primas originais estiveram constituídas, provavelmente, por mistura de argilas caoliníticas (Al2O3•2SiO,2•2H2O), ricas em carbonatos de cálcio e quartzo ou misturas de argilas caoliniticas, quartzo e calcita. Essas matérias-primas originais não atingiram a temperatura de cocção de 950ºC.
Resumo:
The disposal of chemical waste and the precision of analyses of the neutral (NDF) and acid (ADF) detergent fiber contents were evaluated utilizing conventional (Van Soest) and alternative methods of analyses. The recovery of acetone promoted both economic and environmental gains, with a recovery rate of 84.12%. The precision of the analyses was not observed in most of the determinations with reutilization of chemical waste in all the analytical methods tested, in spite of promoting decrease in cost, time invested in the preparation of solutions and the disposal of chemical waste.
Resumo:
The objective of this study was to evaluate the use of biofertilisers for the production of alfalfa shoot, root and nodule dry matter, and also, to evaluate the chemical properties of the soil. This study was conducted in the greenhouse of the Support Department, Animal Production and Health, Faculty of Veterinary Medicine/UNESP, Aracatuba - SP, from May to October 2010. The experimental design was completely randomised with six biofertiliser doses (0, 25, 50, 100, 200 and 400 m(3) ha(-1)) and five replicates. The biofertiliser doses were the primary treatments and the cuts (five) were subplots. The cuts were performed, on average, every 27 days at 10 cm above the soil. At the end of the experiment, the roots, nodules and soil from all experimental units were collected for chemical analysis. We observed a linear increase in dry matter production of the shoots relative to the doses studied. The dry matter production of the roots and nodules was not significantly different. The chemical properties of the soil significantly improved for calcium and magnesium as well as the sum of bases and base saturation with biofertiliser application. Biofertilisers can be used for agricultural production and favourably alter the soil characteristics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study evaluated the influence of finishing and polishing procedures and differ-ent fluoride solutions on superficial morphology and chemistry of the nanofilled composite resinSupreme XT (3M) through the EDX analysis and SEM evaluation. Circular specimens (n 5 30) of 10mm diameter and 2 mm thickness were prepared, with half of the sample assays finished and polishedwith Super-Snap1sandpaper. The experimental groups were divided according to the presence or ab-sence of finishing and polishing and solutions (arti ficial saliva, 0.0 5% of manipulated sodium fluoridesolution, Fluordent Re ach, Oral B, Fluorgard). Specimens were immersed in each respective solutionfor 1 min per day, during 60 days and stored in artificial saliva at 37 6 18C between immersion peri-ods. Topography and chemical analysis was qualitative. It was observed that specimens submitted tofinishing and polishing procedures had lower superficial degradation. Fluoride solutio ns promoted su-perficial alterations on specimens, being the highest degradation obtained with Fluordent Reach. Itca n be concluded that finishing and polishing procedures and the immersion media influence the su-perficial morphology of composite resin tested; the Fluordent Reach was the flu oride solution thatmo st affected the material’s surface.
Resumo:
Aims: The study evaluated the influence of light curing units and immersionmedia on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M)through the EDX analysis and SEM evaluation. Light curing units with different power densitiesand mode of application used were XL 3000 (480 mW/cm2), Jet Lite 4000 Plus (1230mW/cm2), andUltralume Led 5 (790 mW/cm2) and immersion media were artificial saliva, Coke1, tea and coffee,totaling 12 experimental groups. Specimens (10 mm 3 2 mm) were immersed in each respectivesolution for 5 min, three times a day, during 60 days and stored in artificial saliva at 378C 6 18Cbetween immersion periods. Topography and chemical analysis was qualitative. Findings: Groupsimmersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calciumat the material surface. Regarding coffee, there was a reasonable chemical degradation with loss ofload particles and deposition of ions. For tea, superficial degradation occurred in specific areaswith deposition of calcium, carbon, potassium and phosphorus. For Coke1, excessive matrix degra-dation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion:Light curing units did not influence the superficial morphology of composite resin tested, but theimmersion beverages did. Coke1affected material’s surface more than did the other tested drinks.Microsc. Res. Tech. 73:176–181, 2010.
Resumo:
The antimicrobials products from plants have increased in importance due to the therapeutic potential in the treatment of infectious diseases. Therefore, we aimed to examine the chemical characterisation (GC-MS) of essential oils (EO) from seven plants and measure antibacterial activities against bacterial strains isolated from clinical human specimens (methicillin-resistant Staphylococcus aureus (MRSA) and sensitive (MSSA), Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium) and foods (Salmonella Enteritidis). Assays were performed using the minimal inhibitory concentration (MIC and MIC90%) (mg/mL) by agar dilution and time kill curve methods (log CFU/mL) to aiming synergism between EO. EO chemical analysis showed a predominance of terpenes and its derivatives. The highest antibacterial activities were with Cinnamomun zeylanicum (0.25 mg/mL on almost bacteria tested) and Caryophyllus aronzaticus EO (2.40 mg/mL on Salmonella Enteritidis), and the lowest activity was with Eugenia uniflora (from 50.80 mg/mL against MSSA to 92.40 mg/mL against both Salmonella sources and P aeruginosa) EO. The time kill curve assays revealed the occurrence of bactericide synergism in combinations of C. aromaticus and C. zeylanicum with Rosmarinus. officinalis. Thus, the antibacterial activities of the EO were large and this can also be explained by complex chemical composition of the oils tested in this study and the synergistic effect of these EO, yet requires further investigation because these interactions between the various chemical compounds can increase or reduce (antagonism effect) the inhibitory effect of essential oils against bacterial strains.
Resumo:
This study evaluated the influence of finishing and polishing procedures and different fluoride solutions on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Circular specimens (n = 30) of 10 mm diameter and 2 mm thickness were prepared, with half of the sample assays finished and polished with Super-Snap (R) sandpaper. The experimental groups were divided according to the presence or absence of finishing and polishing and solutions (artificial saliva, 0.05% of manipulated sodium fluoride solution, Fluordent Reach, Oral B, Fluorgard). Specimens were immersed in each respective solution for 1 min per day, during 60 days and stored in artificial saliva at 37 +/- 1 degrees C between immersion periods. Topography and chemical analysis was qualitative. It was observed that specimens submitted to finishing and polishing procedures had lower superficial degradation. Fluoride solutions promoted superficial alterations on specimens, being the highest degradation obtained with Fluordent Reach. It can be concluded that finishing and polishing procedures and the immersion media influence the superficial morphology of composite resin tested; the Fluordent Reach was the fluoride solution that most affected the material's surface. Microsc. Res. Tech. 2011., (c) 2011 Wiley Periodicals, Inc.
Resumo:
This work evaluates the spatial distribution of normalised rates of droplet breakage and droplet coalescence in liquidliquid dispersions maintained in agitated tanks at operation conditions normally used to perform suspension polymerisation reactions. Particularly, simulations are performed with multiphase computational fluid dynamics (CFD) models to represent the flow field in liquidliquid styrene suspension polymerisation reactors for the first time. CFD tools are used first to compute the spatial distribution of the turbulent energy dissipation rates (e) inside the reaction vessel; afterwards, normalised rates of droplet breakage and particle coalescence are computed as functions of e. Surprisingly, multiphase simulations showed that the rates of energy dissipation can be very high near the free vortex surfaces, which has been completely neglected in previous works. The obtained results indicate the existence of extremely large energy dissipation gradients inside the vessel, so that particle breakage occurs primarily in very small regions that surround the impeller and the free vortex surface, while particle coalescence takes place in the liquid bulk. As a consequence, particle breakage should be regarded as an independent source term or a boundary phenomenon. Based on the obtained results, it can be very difficult to justify the use of isotropic assumptions to formulate particle population balances in similar systems, even when multiple compartment models are used to describe the fluid dynamic behaviour of the agitated vessel. (C) 2011 Canadian Society for Chemical Engineering