407 resultados para Chagasi
Resumo:
The essential oil of the leaves from Annona coriacea Mart., Annonaceae, was extracted by hydrodistillation in a Clevenger apparatus and analyzed by GC/MS and GC/FID. The oil yield was 0.05% m/m. Sixty compounds were identified, in a complex mixture of sesquiterpenes (76.7%), monoterpenes (20.0%) and other constituents (3.3%). Bicyclogermacrene was its major compound (39.8%) followed by other sesquiterpenes. Most of the monoterpenes were in low concentration (<1%). Only β-pinene and pseudolimonene presented the highest level of 1.6%. The volatile oil presented anti-leishmanial and trypanocidal activity against promastigotes of four species of Leishmania and trypomastigotes of Trypanosoma cruzi, showing to be more active against Leishmania (L.) chagasi (IC50 39.93 µ g/mL) (95% CI 28.00-56.95 µ g/mL).
Resumo:
The occurrence of an outbreak of cutaneous leishmaniasis associated with Leishmania (Leishmania) amazonensis in the municipality of Bela Vista, state of Mato Grosso do Sul, Brazil, and the absence of information on its vectors in this area led the authors to undertake captures of phlebotomine sand flies, using Shannon traps and automatic CDC light traps, in domiciles, forested areas and animal shelters from February 2004-January 2006. A total of 808 specimens belonging to 18 sandfly species have been identified: Bichromomyia flaviscutellata,Brumptomyia avellari, Brumptomyia brumpti, Brumptomyia sp, Evandromyia aldafalcaoae, Evandromyia cortelezzii, Evandromyia evandroi, Evandromyia lenti, Evandromyia teratodes, Evandromyia termitophila, Lutzomyia longipalpis, Nyssomyia whitmani, Pintomyia christenseni, Psathyromyia aragaoi, Psathyromyia campograndensis, Psathyromyia punctigeniculata, Psathyromyia shannoni and Sciopemyia sordellii. The presence of Lu. longipalpis, Ny. whitmani and Bi. flaviscutellata, vectors of Leishmania chagasi, Leishmania braziliensis and L. amazonensis, respectively, has increased.
Resumo:
OBJETIVO: Analisar a acurácia do diagnóstico de dois protocolos de imunofluorescência indireta para leishmaniose visceral canina. MÉTODOS: Cães provenientes de inquérito soroepidemiológico realizado em área endêmica nos municípios de Araçatuba e de Andradina, na região noroeste do estado de São Paulo, em 2003, e área não endêmica da região metropolitana de São Paulo, foram utilizados para avaliar comparativamente dois protocolos da reação de imunofluorescência indireta (RIFI) para leishmaniose: um utilizando antígeno heterólogo Leishmania major (RIFI-BM) e outro utilizando antígeno homólogo Leishmania chagasi (RIFI-CH). Para estimar acurácia utilizou-se a análise two-graph receiver operating characteristic (TG-ROC). A análise TG-ROC comparou as leituras da diluição 1:20 do antígeno homólogo (RIFI-CH), consideradas como teste referência, com as diluições da RIFI-BM (antígeno heterólogo). RESULTADOS: A diluição 1:20 do teste RIFI-CH apresentou o melhor coeficiente de contingência (0,755) e a maior força de associação entre as duas variáveis estudadas (qui-quadrado=124,3), sendo considerada a diluição-referência do teste nas comparações com as diferentes diluições do teste RIFI-BM. Os melhores resultados do RIFI-BM foram obtidos na diluição 1:40, com melhor coeficiente de contingência (0,680) e maior força de associação (qui-quadrado=80,8). Com a mudança do ponto de corte sugerido nesta análise para a diluição 1:40 da RIFI-BM, o valor do parâmetro especificidade aumentou de 57,5% para 97,7%, embora a diluição 1:80 tivesse apresentado a melhor estimativa para sensibilidade (80,2%) com o novo ponto de corte. CONCLUSÕES: A análise TG-ROC pode fornecer importantes informações sobre os testes de diagnósticos, além de apresentar sugestões sobre pontos de cortes que podem melhorar as estimativas de sensibilidade e especificidade do teste, e avaliá-los a luz do melhor custo-benefício.
Resumo:
Uninfected dogs and those naturally infected with Leishmania chagasi exhibiting different clinical forms of disease were evaluated for the presence of anti-Neospora caninum and anti-Toxoplasma gondii antibodies. Blood samples were collected from 110 mongrel dogs. Sera were tested using the indirect fluorescent antibody test (IFAT), and the animals with visceral leishmaniasis (VL) (n=60) were classified clinically. Out of the 110 sera investigated, 5 (4.5%) were positive for N. caninum (IFAT≥50) and 36 (32.7%) for T. gondii (IFAT≥16). Anti-L. chagasi antibody titers in asymptomatic dogs (n=10) were found to be significantly lower (P<0.05) than those in oligosymptomatic ones (n=22), which were in turn significantly lower (P<0.05) than those in symptomatic ones (n=28). No association between Leishmania and N. caninum infections was observed. Among dogs infected with L. chagasi, a tendency (P=0.053) towards an association between the infection with T. gondii and the appearance of VL symptoms was observed, suggesting that the clinical manifestation of VL in dogs may enhance their susceptibility to T. gondii. The possible influence of the immunosuppressive status of canine leishmaniasis in the different clinical forms of the disease is discussed.
Resumo:
To identify natural infections by Leishmania spp. in insect vectors of cutaneous and visceral leishmaniasis, we performed field studies in natural and anthropic environments in the Guaicurus Settlement (Bodoquena Range) of the Bonito municipality, Mato Grosso do Sul state, Brazil. From October 2002 to October 2003, a total of 1395 sandfly females were captured with Shannon and light traps and dissected in search of flagellates. The sample is composed of a total of 13 species, with Lutzomyia almerioi (59.9%) and Lutzomyia longipalpis (31.4%) predominant. Infections by flagellates were directly observed in three of the dissected of Lu. almerioi females (0.36%). To increase the sensitivity of detection, DNA extracted from pools of the 1220 dissected females (Lu. almerioi 808, Lu. longipalpis 399 and Nyssomyia whitmani 13) was subjected to small subunit rRNA-based polymerase chain reactions (SSU-PCR). DNA from Leishmania (L.) infantum chagasi was detected in at least 0.37% of Lu. almerioi females and in 0.25% of Lu. longipalpis females. The DNA of the Leishmania (Viannia) sp. was detected in 0.12% of Lu. almerioi and in 0.70% of Lu. longipalpis. Leishmania (L.) amazonensis was found in 1.25% of Lu. longipalpis. Mixed infections of L. (Leishmania) sp. and L. (Viannia) sp. were found in 0.50% of Lu. longipalpis. When considering that each positive pool contained at least a single infected specimen, we found a 1.23% rate of Leishmania spp. infection among the total population of dissected female sand flies as determined by PCR. This is the first report of natural infection by L. (L.) infantum chagasi and L. (Viannia) sp. in Lu. almerioi. It is also the first report of infection by L. (Viannia) sp. in Lu. longipalpis. The observation that Lu. longipalpis and Lu. almerioi are naturally infected by agents of both cutaneous and visceral leishmaniases suggests that these two species play a role in the transmission (continua) (continuação) of these diseases within the study area. Furthermore, the finding that Lu. longipalpis has been naturally infected by L. (L.) amazonensis and L. (Viannia) sp., and Lu. almerioi by L. (L.) infantum chagasi and L. (Viannia), suggests their participation as permissive vectors
Resumo:
Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73 +/- 12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-gamma secretion, ratios of IFN-gamma/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNF alpha/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-gamma/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.
Resumo:
Background: Visceral leishmaniasis in Brazil is caused by the protozoan Leishmania (Leishmania) chagasi and it is transmitted by sandfly of the genus Lutzomyia. Dogs are an important domestic reservoir, and control of the transmission of visceral leishmaniasis (VL) to humans includes the elimination of infected dogs. However, though dogs are considered to be an important element in the transmission cycle of Leishmania, the identification of infected dogs representing an immediate risk for transmission has not been properly evaluated. Since it is not possible to treat infected dogs, they are sacrificed when a diagnosis of VL is established, a measure that is difficult to accomplish in highly endemic areas. In such areas, parameters that allow for easy identification of reservoirs that represents an immediate risk for transmission is of great importance for the control of VL transmission. In this study we aimed to identify clinical parameters, reinforced by pathological parameters that characterize dogs with potential to transmit the parasite to the vector. Results: The major clinical manifestations of visceral leishmaniasis in dogs from an endemic area were onicogriphosis, skin lesions, conjunctivitis, lymphadenopathy, and weight loss. The transmission potential of these dogs was assessed by xenodiagnosis using Lutzomyia longipalpis. Six of nine symptomatic dogs were infective to Lutzomyia longipalpis while none of the five asymptomatic dogs were infective to the sandfly. Leishmania amastigotes were present in the skin of all clinically symptomatic dogs, but absent in asymptomatic dogs. Higher parasite loads were observed in the ear and ungueal region, and lower in abdomen. The inflammatory infiltrate was more intense in the ears and ungueal regions of both symptomatic and asymptomatic dogs. In clinically affected dogs in which few or none Leishmania amastigotes were observed, the inflammatory infiltrate was constituted mainly of lymphocytes and macrophages. When many parasites were present, the infiltrate was also comprised of lymphocytes and macrophages, as well as a larger quantity of polymorphonuclear neutrophils (PMNs). Conclusion: Dogs that represent an immediate risk for transmission of Leishmania in endemic areas present clinical manifestations that include onicogriphosis, skin lesions, conjunctivitis, lymphadenopathy, and weight loss. Lymphadenopathy in particular was a positive clinical hallmark since it was closely related to the positive xenodiagnosis.
T cells, adhesion molecules and modulation of apoptosis in visceral leishmaniasis glomerulonephritis
Resumo:
Background: Immune complex deposition is the accepted mechanism of pathogenesis of VL glomerulopathy however other immune elements may participate. Further in the present study, no difference was seen between immunoglobulin and C3b deposit intensity in glomeruli between infected and non-infected dogs thus T cells, adhesion molecules and parameters of proliferation and apoptosis were analysed in dogs with naturally acquired VL from an endemic area. The dog is the most important domestic reservoir of the protozoa Leishmania (L.) chagasi that causes visceral leishmaniasis (VL). The similarity of VL manifestation in humans and dogs renders the study of canine VL nephropathy of interest with regard to human pathology. Methods: From 55 dogs with VL and 8 control non-infected dogs from an endemic area, kidney samples were analyzed by immunohistochemistry for immunoglobulin and C3b deposits, staining for CD4+ and CD8+ T cells, ICAM-1, P-selectin and quantified using morphometry. Besides proliferation marker Ki-67, apoptosis markers M30 and TUNEL staining, and related cytokines TNF-alpha, IL-1 alpha were searched and quantified. Results: We observed similar IgG, IgM and IgA and C3b deposit intensity in dogs with VL and non-infected control dogs. However we detected the Leishmania antigen in cells in glomeruli in 54, CD4+ T cells in the glomeruli of 44, and CD8+ T cells in 17 of a total of 55 dogs with VL. Leishmania antigen was absent and T cells were absent/scarse in eight non-infected control dogs. CD 4+ T cells predominate in proliferative patterns of glomerulonephritis, however the presence of CD4+ and CD8+ T cells were not different in intensity in different patterns of glomerulonephritis. The expression of ICAM-1 and P-selectin was significantly greater in the glomeruli of infected dogs than in control dogs. In all patterns of glomerulonephritis the expression of ICAM-1 ranged from minimum to moderately severe and P-selectin from absent to severe. In the control animals the expression of these molecules ranged from absent to medium intensity. It was not observed any correlation between severity of the disease and these markers. There was a correlation between the number of Leishmania antigen positive cells and CD4+ T cells, and between the number of CD4+ T cells and CD8+ T cells. In dogs presenting different histopathological patterns of glomerulonephritis, parameters of proliferation and apoptosis were studied. Ki-67, a proliferative marker, was not detected locally, but fewer apoptotic cells and lower TNF-alpha expression were seen in infected animals than in non-infected controls. Conclusion: Immunopathogenic mechanisms of VL glomerulonephritis are complex and data in the present study suggest no clear participation of immunoglobulin and C3b deposits in these dogs but the possible migration of CD4+ T cells into the glomeruli, participation of adhesion molecules, and diminished apoptosis of cells contributing to determine the proliferative pattern of glomerulonephritis in VL.
Resumo:
Tubercidin (TUB) is an adenosine analog with potent antiparasite action, unfortunately associated with severe host toxicity. Prevention of TUB toxicity can be reached associating nitrobenzylthioinosine (NBMPR), an inhibitor of the purine nucleoside transport, specifically target to the mammal cells. It was demonstrated that this nucleoside transport inhibitor has no significant effect in the in vitro uptake of TUB by Schistosoma mansoni and Trypanosoma gambiense. Seeking to evaluate if the association of these compounds is also effective against leishmania, we analyzed the TUB-NBMPR combined treatment in in vitro cultures of promastigote forms of Leishmania (L.) amazonensis, Leishmania (L.) chagasi, Leishmania (L.) major, and Leishmania (V.) braziliensis as well as in cultures of amastigote forms of L. (L.) amazonensis, mice macrophages infected with L. (L.) amazonensis, and in vivo tests in BALB/c mice infected with L. (L.) amazonensis. We demonstrated that TUB-NBMPR combined treatment can be effective against leishmania cells protecting mammalian cells from TUB toxicity.
Resumo:
The Leishmune (R) vaccine has been used in endemic areas to prevent canine visceral leishmaniasis in Brazil, but cytokine production induced by vaccination has rarely been investigated in dogs. This study aimed to evaluate the immune response of dogs vaccinated with Leishmune FML vaccine (Fort Dodge) against total antigen of Leishmania (Leishmania) chagasi (TAg) and FML. Twenty healthy dogs from Aracatuba, Sao Paulo, Brazil, an endemic leishmaniasis area, received three consecutive subcutaneous injection of Leishmune vaccine at 21-day intervals. PBMC were isolated before and 10 days after completing vaccination and lymphoproliferative response and antibody production against FML or total promastigote antigen were tested. Cytokines IFN-gamma, IL-4 and TNF-alpha were measured in culture supernatant and CD4+/CD25+ and CD8+/CD25+ T cell presence was determined. Analysis of the data indicated that the vaccine conferred humoral responses (100%) against both antigens and cellular immunity to FML (85%) and total antigen (80%), the supernatant of cultured cells stimulated with TAg and FML showed an increase in IFN-gamma (P < 0.05), and the vaccine reduced CD4+/CD25+ T cell presence compared to that observed before vaccination. These responses may constitute part of the immune mechanism induced by Leishmune. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In South America, visceral leishmaniasis is a zoonosis caused by the protozoan species Leishmania infantum (syn. L. chagasi) and is primarily transmitted through the bite of the female Lutzomyia longipalpis. Its main reservoir in urban areas is the dog. The application of control measures recommended by health agencies have not achieved significant results in reducing the incidence of human cases, and the lack of effective drugs to treat dogs resulted in the prohibition of this course of action in Brazil. Therefore, it is necessary to search new alternatives for the treatment of canine and human visceral leishmaniasis. The objectives of this study were to evaluate the in vitro effect of fractions from Aloe vera (aloe), Coriandrum sativum (coriander), and Ricinus communis (castor) on promastigotes and amastigotes of L. infantum and to analyze the toxicity against the murine monocytic cells RAW 264.7. To determine the viability of these substances on 50% parasites (IC50), we used a tetrazolium dye (MU) colorimetric assay (bromide 3-4.5-dimethylthiazol-2-yl-2,5-dephenyltetrazolium), and on amastigotes we performed an in situ ELISA. All fractions were effective against L. infantum promastigotes and did not differ from the positive control pentamidine (p > 0.05). However, the R. communis ethyl acetate and chloroform fractions, as well as the C. sativum methanol fraction, were the most effective against amastigotes and did not differ from the positive control amphotericin B (p > 0.05). The R. communis ethyl acetate fraction was the least toxic, presenting 83.5% viability of RAW 264.7 cells, which was similar to the results obtained with amphotericin B (p > 0.05). Based on these results, we intend to undertake in vivo studies with R. communis ethyl acetate fractions due the high effectiveness against amastigotes and promastigotes of L. infantum and the low cytotoxicity towards murine monocytic cells. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Paraffin-embedded samples commonly stored at educational and research institutions constitute tissues banks for follow-up or epidemiological studies; however, the paraffin inclusion process involves the use of substances that can cause DNA degradation. In this study, a PCR protocol was applied to identify Leishmania strains in 33 paraffin-embedded skin samples of patients with American cutaneous leishmaniasis. DNA was obtained by the phenol-chloroform protocol following paraffin removal and then used in PCR or nested PCR based on the nucleotide sequence of the small subunit ribosomal RNA (SSU rDNA). The amplicons obtained were cloned and sequenced to determine the single nucleotide polymorphism that distinguishes between different Leishmania species or groups. This assay allowed to distinguish organisms belonging to the subgenus Viannia and identify L. (Leishmania) amazonensis and L. (L.) chagasi of the Leishmania subgenus. Of the 33 samples, PCR and nested PCR identified 91% of samples. After sequencing the PCR product of 26 samples, 16 were identified as L. (L.) amazonensis, the other 10 contain organisms belonging to the L. (Viannia) sub-genus. These results open a huge opportunity to study stored samples and promote relevant contributions to epidemiological studies.
Resumo:
Amphibian skin secretions are considered a rich source of biologically active compounds and are known to be rich in peptides, bufadienolides and alkaloids. Bufadienolides are cardioactive steroids from animals and plants that have also been reported to possess antimicrobial activities. Leishmaniasis and American Trypanosomiasis are parasitic diseases found in tropical and subtropical regions. The efforts toward the discovery of new treatments for these diseases have been largely neglected, despite the fact that the only available treatments are highly toxic drugs. In this work, we have isolated, through bioguided assays, the major antileishmanial compounds of the toad Rhinella jimi parotoid macrogland secretion. Mass spectrometry and (1)H and (13)C NMR spectroscopic analyses were able to demonstrate that the active molecules are telocinobufagin and hellebrigenin. Both steroids demonstrated activity against Leishmania (L.) chagasi promastigotes, but only hellebrigenin was active against Trypanosoma cruzi trypomastigotes. These steroids were active against the intracellular amastigotes of Leishmania, with no activation of nitric oxide production by macrophages. Neither cytotoxicity against mouse macrophages nor hemolytic activities were observed. The ultrastructural studies with promastigotes revealed the induction of mitochondrial damage and plasma membrane disturbances by telocinobufagin, resulting in cellular death. This novel biological effect of R. jimi steroids could be used as a template for the design of new therapeutics against Leishmaniasis and American Trypanosomiasis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Drug delivery systems are promising pharmaceutical formulations used to improve the therapeutic index of drugs. In this study, we developed a liposomal formulation of furazolidone that targets Leishmania (Leishmania) chagasi amastigotes in a hamster model. Using laser scanning confocal microscopy, it was demonstrated that the liposomal drug co-localised with L. (L.) chagasi amastigotes within macrophages. Liposomal furazolidone administered intraperitoneally at 0.5 mg/kg for 12 consecutive days reduced spleen (74%) and liver (32%) parasite burden at a 100-fold lower dose than the free drug. Free furazolidone (50 mg/kg) also effectively reduced spleen (82.5%) and liver (85%) parasites; its in vitro activity against promastigotes and intracellular amastigotes demonstrated a high degree of parasite selectivity. Thus, furazolidone, both in the free and liposome-loaded formulation, is an effective inhibitor of L. (L.) chagasi, representing a possible cost-effective drug candidate for the treatment of visceral leishmaniasis. (C) 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
Visceral leishmaniasis (VL) or Kala-azar is a serious protozoan infectious disease caused by an obligate intracellular parasite. Cytokines have a major role in determining progression and severity of clinical manifestations in VL. We investigated polymorphisms in the TGFB1 and IL8 genes, which are cytokines known to have a role in onset and severity of the disease. Polymorphisms at TGFB1 -509 C/T and +869 T/C, and IL8 -251 A/T were analyzed by a PCR-RFLP technique, in 198 patients with VL, 98 individuals with asymptomatic infection positive for a delayed-type hypersensitivity test (DTH+) and in 101 individuals with no evidence of infection (DTH-). The presence of the T allele in position -509 of the TGFB1 gene conferred a two-fold risk to develop infection both when including those with clinical symptoms (DTH+ and VL, grouped) or when considering DTH+ only, respectively p = 0.007, OR = 1.9 [1.19-3.02] and p = 0.012, OR = 2.01 [1.17-3.79], when compared with DTH- individuals. In addition, occurrence of hemorrhage was associated with TGFB1 -509 T allele. We suggest that the -509 T allele of the TGFB1 gene, a cytokine with a biologically relevant role in the natural history of the disease, may contribute to overall susceptibility to infection by Leishmania and to severity of the clinical disease. (C) 2011 Elsevier B.V. All rights reserved.