998 resultados para Cenozoic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies about the strength of the lithosphere in the center of Iberia fail to resolve the depth of earthquakes because of the rheological uncertainties. Therefore, new contributions are considered (the crustal structure from a density model) and several parameters (tectonic regime, mantle rheology, strain rate) are checked in this paper to properly examine the role of lithospheric strength in the intraplate seismicity and the Cenozoic evolution. The strength distribution with depth, the integrated strength, the effective elastic thickness and the seismogenic thickness have been calculated by a finite element modelling of the lithosphere across the Central System mountain range and the bordering Duero and Madrid sedimentary basins. Only a dry mantle under strike-slip/extension and a strain rate of 10-15 s-1, or under extension and 10-16 s-1, causes a strong lithosphere. The integrated strength and the elastic thickness are lower in the mountain chain than in the basins. This heterogeneity has been maintained since the Cenozoic and determine the mountain uplift and the biharmonic folding of the Iberian lithosphere during the Alpine deformations. The seismogenic thickness bounds the seismic activity in the upper–middle crust, and the decreasing crustal strength from the Duero Basin towards the Madrid Basin is related to a parallel increase in Plio–Quaternary deformations and seismicity. However, elasto–plastic modelling shows that current African–Eurasian convergence is resolved elastically or ductilely, which accounts for the low seismicity recorded in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sub-Numidian Tertiary stratigraphic record of the Tunisian Tell has been updated by means of 11 stratigraphic successions belonging to the Maghrebian Flysch Basin (N-African Margin) reconstructed in the Tunisian Numidian Zone and the Triassic Dome Zone. The Sub-Numidian successions studied range from the Paleocene to the Priabonian, representing a major change in the sedimentation from the latest Cretaceous onwards. The Sub-Numidian succession and the Numidian Formation are separated by an Intermediate interval located between two erosive surfaces (local paraconformities). The stratigraphic analysis has revealed diachronous contacts between distal slope to basinal sedimentary formation, allowing the identification of an Early Eocene Chouabine marker bed. The integrated biostratigraphic analysis made by means of planktonic foraminifera and calcareous nannoplankton updates the ages of the formations studied, proving younger than previously thought. The new definition of the Sub-Numidian stratigraphy enables a better correlation with equivalent successions widely outcropping along the Maghrebian, Betic, and southern Apennine Chains. The study proposes a new evolutionary tectonic/sedimentary model for this Tunisian sector of the Maghrebian Chain during the Paleogene after the Triassic–Cretaceous extensional regime. This paleogeographic reorganization is considered a consequence of the beginning of the tectonic inversion (from extensional to compressional), leading to the end of the preorogenic sedimentation. Our results suggest a non-tabular stratigraphy (marked by lateral changes of lithofacies, variable thicknesses, and the presence of diachronous boundaries) providing significant elements for a re-evaluation of active petroleum systems on the quality, volume, distribution, timing of oil generation, and on the migration and accumulation of the oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studied Cenozoic sedimentary successions consist of deposits from continental/shallow-water to deep-marine environments of the Malaguide Complex (Betic Cordillera) outcropping in the Sierra Espuña area (SE Spain). The aim of this study is to characterize the composition, source area(s) provenance and weathering processes of these sedimentary successions from the pre-orogenic (Paleocene-Early Oligocene) to the syn-orogenic (Late Oligocene-Early Miocene) stage using petrological and geochemical methodologies. The studied sandstones are mainly quartzolithic with abundant metamorphic and sedimentary lithic fragments. In particular, the composition of samples from the pre-orogenic cycle is mainly carbonate with important siliciclastic components that occur within the medium to fine grained arenites. The composition of samples from the syn-orogenic cycle is characterized by a sharp change from carbonate to siliciclastic terms. Thus, the composition of the overall sandstone samples is very heterogeneous and suggests a source area mainly characterized by the Malaguide basement and lower units of the Internal Betic Zone, that partially compose the Mesomediterranean Microplate. The geochemical proxies suggest a provenance mainly from felsic source area with a minor supply from mafic rocks in some samples of the syn-orogenic stage. Furthermore, palaeoweathering indices indicate low to moderate weathering conditions for the sources. The Cenozoic sedimentary successions of the Malaguide Complex played an important role in the geodynamic evolution of the Betic Cordillera that represents the key tectonic element of the western domains of the Mesomediterranean Microplate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six sites (759-764) were drilled on the Exmouth Plateau during Ocean Drilling Program Leg 122. Nannofossilrich Cenozoic sediments were recovered at all six sites, reflecting the open-ocean conditions that prevailed over the Exmouth Plateau during the Cenozoic. Calcareous nannofossils are abundant, diverse (250 different species identified), and generally well preserved throughout the composite lower Paleocene to Quaternary section. The diversity and preservation of nannofossils permits a high degree of stratigraphic resolution at each site. Site 762 on the central part of the Exmouth Plateau contains an almost unbroken Cenozoic record (only Miocene Zones NN3, NN8, and NN10 are missing). This site may prove to be a useful Cenozoic biostratigraphic and biomagnetochronologic reference section for the eastern Indian Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The differential effects of climate change, sea level, and water mass circulation on deposition/erosion of marine sediments can be constrained from the distribution of unconformities in the world's oceans. I identified temporal and depth patterns of hiatuses ("hiatus events") from a large and chronologically well constrained stratigraphic database of deep-sea sediments. The Paleogene is characterized by few, several million year long hiatuses. The most significant Cenozoic hiatus event spans most of the Paleocene. The Neogene is characterized by short, frequent hiatus events nearly synchronous in shallow and deep water sediments. Epoch boundaries are characterized by peaks in deep water hiatuses possibly caused by an increased circulation of corrosive bottom water and sediment dissolution. The Plio-Pleistocene is characterized by a gradual decrease in the frequency of hiatuses. Future studies will focus on the regional significance of the hiatus events and their possible causes.