960 resultados para Cell-lines
Resumo:
One growth factor receptor commonly altered during prostate tumor progression is the epidermal growth factor receptor (EGFR). EGFR signaling regulates Erk1/2 phosphorylation through multiple mechanisms. We hypothesized that PKC isozymes play a role in EGFR-dependent signaling, and that through PKC isozyme selective inhibition, EGFR-dependent Erk1/2 activation can be attenuated in AICaP cells. ^ To test the hypothesis, PKC activation was induced by 12-O-tetradecanoyi-phorbol-13-acetate (TPA) in PC-3 cells. As a result, Erk1/2 was activated similarly to what was observed upon EGF stimulation. EGF-induced Erk1/2 activation in PC-3 cells was PKC-dependent, as demonstrated through use of a selective PKC inhibitor, GF109203X. This provides evidence for PKC regulatory control over Erk1/2 signaling downstream of EGFR. Next, we demonstrated that when PKC was inhibited by GF109203X, EGF-stimulated Erk1/2 activation was inhibited in PC-3, but not DU145 cells. TPA-stimulated Erk1/2 activation was EGFR-dependent in both DU145 and PC-3 cells, demonstrated through abrogation of Erk1/2 activation by a selective EGFR inhibitor AG1478. These data support PKC control at or upstream of EGFR in AICaP cells. We observed that interfering with ligand/EGFR binding abrogated Erk1/2 signaling in TPA-stimulated cells, revealing a role for PKC upstream of EGFR. ^ Next, we determined which PKC isozymes might be responsible for Erk1/2 regulation. We first determined that human AICaP cell lines express the same PKC isozymes as those observed in clinical prostate cancer specimens (α, ϵ, &zgr;, ι and PKD). Isozyme-selective methods were employed to characterize discrete PKC isozyme function in EGFR-dependent Erk1/2 activation. Pharmacologic inhibitors implicated PKCα in TPA-induced EGFR-dependent Erk1/2 activation in both PC-3 and DU145 cells. Further, the cPKC-specific inhibitor, Gö6976 decreased viablilty of DU145 cells, providing evidence that PKCα is necessary for growth and survival. Finally, resveratrol, a phytochemical with strong cancer therapeutic potential inhibited Erk1/2 activation, and this correlated with selective inhibition of PKCα. These results demonstrate that PKC regulates pathways critical to progression of CaP cells, including those mediated by EGFR. Thus, PKC isozyme-selective targeting is an attractive therapeutic strategy, and understanding the role of specific PKC isozymes in CaP cell growth and survival may aid in development of effective, non-toxic PKC-targeted therapies. ^
Resumo:
The neu gene encodes the transmembrane tyrosine kinase growth factor receptor, p185. To study neu induced cellular transformation, we developed revertant cells from the neu transformed NIH 3T3 cell line, B104-1-1, by treating the cells with the chemical mutagen ethylmethane sulfonate. The morphologically normal revertant cells were first selected by their ability to either attach to culture plates or survive in the presence of the cytotoxic reagents colchicine or 5-fluoro-2deoxyuridine. Two of the 21 candidate revertant cell lines isolated were further characterized and were found to lose their anchorage independence and ability to grow in 1% calf serum, indicating that they were nontransformed even though they still expressed p185 oncoprotein. The tyrosine residues of p185 in these two revertants were underphosphorylated, which may have contributed to their nontransformed status. Also, the p185 oncoprotein lacked significant tyrosine kinase activity. In addition, these revertants also resisted transformation by neu and several additional oncogenes (H-ras, N-ras, v-mos, v-abl, and v-fos) as determined by focus forming assays. These results indicated that we had successfully developed, from neu transformed cells, revertants which exhibited defective tyrosine phosphorylation and kinase activity of the neu oncoprotein. The results also suggested that neu and several other oncogenes may share common elements in their pathways for the induction of cellular transformation. ^
Resumo:
The p53 gene is known to be one of the most commonly mutated genes in human cancers. Many squamous cell carcinomas of the head and neck (SCCHNs) have been shown to contain nonfunctional p53 as well. The use of p53-mediated gene therapy to treat such cancers has become an intensive area of research. Although there have been varied treatment responses to p53 gene therapy, the role that endogenous p53 status plays in this response has not been thoroughly examined. Because of this, the hypothesis of this study examined the role that the endogenous p53 status of cells plays in their response to p53 gene therapy. To test this, an adenoviral vector containing p53 (p53FAd) was administered to three squamous cell carcinoma lines with varied endogenous p53. The SCC9 cell line demonstrates no p53 protein expression, the SCC4 cell line displays overexpression of a mutant p53 protein, and the 1986LN cell line displays low to no expression of wild-type p53 protein as a consequence of human papillomavirus infection. After treatment with p53FAd, the cells were examined for evidence of exogenous p53 expression, growth suppression, alterations in cellular proteins, G1 growth arrest, apoptosis, and differentiation state. Each cell line exhibited exogenous p53 protein. Growth suppression was seen most prominently in the SCC9 cells, to some extent in the 1986LN cells, and little was seen with the SCC4 cells. WAF1/p21 protein was induced in all three cell lines, while PCNA, bcl-2, and bax expression was not significantly affected in any of the lines. Apoptosis developed first in SCC9 cells, next in 1986LN cells, with little seen in the SCC4 cells. The SCC9 line was the only line to show significant GI growth arrest. No significant differences were observed in the overall expression of differentiation markers, aside from increased keratin 13 mRNA levels in all three lines indicating a possible tendency toward differentiation. This study indicates that the endogenous p53 status of squamous cell carcinomas appears to play a critical role in determining the response to p53 adenoviral gene therapy. ^
Resumo:
To discover genes involved in von Hippel-Lindau (VHL)-mediated carcinogenesis, we used renal cell carcinoma cell lines stably transfected with wild-type VHL-expressing transgenes. Large-scale RNA differential display technology applied to these cell lines identified several differentially expressed genes, including an alpha carbonic anhydrase gene, termed CA12. The deduced protein sequence was classified as a one-pass transmembrane CA possessing an apparently intact catalytic domain in the extracellular CA module. Reintroduced wild-type VHL strongly inhibited the overexpression of the CA12 gene in the parental renal cell carcinoma cell lines. Similar results were obtained with CA9, encoding another transmembrane CA with an intact catalytic domain. Although both domains of the VHL protein contribute to regulation of CA12 expression, the elongin binding domain alone could effectively regulate CA9 expression. We mapped CA12 and CA9 loci to chromosome bands 15q22 and 17q21.2 respectively, regions prone to amplification in some human cancers. Additional experiments are needed to define the role of CA IX and CA XII enzymes in the regulation of pH in the extracellular microenvironment and its potential impact on cancer cell growth.
Resumo:
β-catenin has functions as both an adhesion and a signaling molecule. Disruption of these functions through mutations of the β-catenin gene (CTNNB1) may be important in the development of colorectal tumors. We examined the entire coding sequence of β-catenin by reverse transcriptase–PCR (RT-PCR) and direct sequencing of 23 human colorectal cancer cell lines from 21 patients. In two cell lines, there was apparent instability of the β-catenin mRNA. Five different mutations (26%) were found in the remaining 21cell lines (from 19 patients). A three-base deletion (codon 45) was identified in the cell line HCT 116, whereas cell lines SW 48, HCA 46, CACO 2, and Colo 201 each contained single-base missense mutations (codons 33, 183, 245, and 287, respectively). All 23 cell lines had full-length β-catenin protein that was detectable by Western blotting and that coprecipitated with E-cadherin. In three of the cell lines with CTNNB1 mutations, complexes of β-catenin with α-catenin and APC were detectable. In SW48 and HCA 46, however, we did not detect complexes of β-catenin protein with α-catenin and APC, respectively. These results show that selection of CTNNB1 mutations occurs in up to 26% of colorectal cancers from which cell lines are derived. In these cases, mutation selection is probably for altered β-catenin function, which may significantly alter intracellular signaling and intercellular adhesion and may serve as a complement to APC mutations in the early stages of tumorigenesis.
Resumo:
The protooncogene c-abl encodes a nonreceptor tyrosine kinase whose cellular function is unknown. To study the possible involvement of c-Abl in proliferation, differentiation, and cell cycle regulation of early B cells, long-term lymphoid bone marrow cultures were established from c-abl-deficient mice and their wild-type littermates. Interleukin 7-dependent progenitor B-cell clones and lines expressing B220 and CD43 could be generated from both mutant and wild-type mice. The mutant and wild-type lines displayed no difference in their proliferative capacity as measured by thymidine incorporation in response to various concentrations of interleukin 7. Similarly, c-abl deficiency did not interfere with the ability of mutant clones to differentiate into surface IgM-positive cells in vitro. Analysis of cultures after growth factor deprivation, however, revealed a strikingly accelerated rate of cell death in c-abl mutant cells, due to apoptosis as confirmed by terminal deoxynucleotidyltransferase-mediated UTP nick end labeling analysis. Furthermore, a greater susceptibility to apoptotic cell death in c-abl mutant cells was also observed after glucocorticoid treatment. These results suggest that mutant c-Abl renders the B-cell progenitors more sensitive to apoptosis, and may account for some of the phenotypes observed in c-abl-deficient animals.
Resumo:
Pulmonary neuroepithelial bodies (NEB) are widely distributed throughout the airway mucosa of human and animal lungs. Based on the observation that NEB cells have a candidate oxygen sensor enzyme complex (NADPH oxidase) and an oxygen-sensitive K+ current, it has been suggested that NEB may function as airway chemoreceptors. Here we report that mRNAs for both the hydrogen peroxide sensitive voltage gated potassium channel subunit (KH2O2) KV3.3a and membrane components of NADPH oxidase (gp91phox and p22phox) are coexpressed in the NEB cells of fetal rabbit and neonatal human lungs. Using a microfluorometry and dihydrorhodamine 123 as a probe to assess H2O2 generation, NEB cells exhibited oxidase activity under basal conditions. The oxidase in NEB cells was significantly stimulated by exposure to phorbol esther (0.1 μM) and inhibited by diphenyliodonium (5 μM). Studies using whole-cell voltage clamp showed that the K+ current of cultured fetal rabbit NEB cells exhibited inactivating properties similar to KV3.3a transcripts expressed in Xenopus oocyte model. Exposure of NEB cells to hydrogen peroxide (H2O2, the dismuted by-product of the oxidase) under normoxia resulted in an increase of the outward K+ current indicating that H2O2 could be the transmitter modulating the O2-sensitive K+ channel. Expressed mRNAs or orresponding protein products for the NADPH oxidase membrane cytochrome b as well as mRNA encoding KV3.3a were identified in small cell lung carcinoma cell lines. The studies presented here provide strong evidence for an oxidase-O2 sensitive potassium channel molecular complex operating as an O2 sensor in NEB cells, which function as chemoreceptors in airways and in NEB related tumors. Such a complex may represent an evolutionary conserved biochemical link for a membrane bound O2-signaling mechanism proposed for other cells and life forms.
Resumo:
Cancer vaccines used to generate specific cytotoxic T lymphocytes are not effective against tumor cells that have lost or suppressed expression of their class I major histocompatibility complex proteins. This loss is common in some cancers and particularly in metastatic lesions. We show that β2-microglobulin-deficient class I-negative melanoma variants derived from patients undergoing specific T cell therapy are lysed by heterologous as well as autologous natural killer (NK) lines and clones, but not by specific T cells. Moreover, the minor NK cell fraction but not the major T cell fraction derived from heterologous lymphokine activated killer cells kills those tumor cell lines. ICAM-1 expression by the different class I protein deficient tumors was correlated with their sensitivity to lysis by NK cells. Adoptive autologous NK therapy may be an important supplement to consider in the design of new cancer immunotherapies.
Resumo:
Radiation is the primary modality of therapy for all commonly occurring malignant brain tumors, including medulloblastoma and glioblastoma. These two brain tumors, however, have a distinctly different response to radiation therapy. Medulloblastoma is very sensitive to radiation therapy, whereas glioblastoma is highly resistant, and the long-term survival of medulloblastoma patients exceeds 50%, while there are few long-term survivors among glioblastoma patients. p53-mediated apoptosis is thought to be an important mechanism mediating the cytotoxic response of tumors to radiotherapy. In this study, we compared the response to radiation of five cell lines that have wild-type p53: three derived from glioblastoma and two derived from medulloblastoma. We found that the medulloblastoma-derived cell lines underwent extensive radiation-induced apoptotic cell death, while those from glioblastomas did not exhibit significant radiation-induced apoptosis. p53-mediated induction of p21BAX is thought to be a key component of the pathway mediating apoptosis after the exposure of cells to cytotoxins, and the expression of mRNA encoding p21BAX was correlated with these cell lines undergoing radiation-induced apoptosis. The failure of p53 to induce p21BAX expression in glioblastoma-derived cell lines is likely to be of biologic significance, since inhibition of p21BAX induction in medulloblastoma resulted in a loss of radiation-induced apoptosis, while forced expression of p21BAX in glioblastoma was sufficient to induce apoptosis. The failure of p53 to induce p21BAX in glioblastoma-derived cell lines suggests a distinct mechanism of radioresistance and may represent a critical factor in determining therapeutic responsiveness to radiation in glioblastomas.
Resumo:
We have previously identified a cellular protein kinase activity termed TAK that specifically associates with the HIV types 1 and 2 Tat proteins. TAK hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II in vitro in a manner believed to activate transcription [Herrmann, C. H. & Rice, A. P. (1995) J. Virol. 69, 1612–1620]. We show here that the catalytic subunit of TAK is a known human kinase previously named PITALRE, which is a member of the cyclin-dependent family of proteins. We also show that TAK activity is elevated upon activation of peripheral blood mononuclear cells and peripheral blood lymphocytes and upon differentiation of U1 and U937 promonocytic cell lines to macrophages. Therefore, in HIV-infected individuals TAK may be induced in T cells following activation and in macrophages following differentiation, thus contributing to high levels of viral transcription and the escape from latency of transcriptionally silent proviruses.
Resumo:
The type IV collagenases/gelatinases matrix metalloproteinase-2 (MMP-2) and MMP-9 play a variety of important roles in both physiological and pathological processes and are regulated by various growth factors, including transforming growth factor-β1 (TGF-β1), in several cell types. Previous studies have suggested that cellular control of one or both collagenases can occur through direct transcriptional mechanisms and/or after secretion through proenzyme processing and interactions with metalloproteinase inhibitors. Using human prostate cancer cell lines, we have found that TGF-β1 induces the MMP-9 proenzyme; however, this induction does not result from direct effects on gene transcription but, instead, through a protein synthesis–requiring process leading to increased MMP-9 mRNA stability. In addition, we have examined levels of TGF-β1 regulation of MMP-2 in one prostate cancer cell line and found that TGF-β1 induces higher secreted levels of this collagenase through increased stability of the secreted 72-kDa proenzyme. These results identify two novel nontranscriptional pathways for the cellular regulation of MMP-9 and MMP-2 collagenase gene expression and activities.
Resumo:
The GSG (GRP33, Sam68, GLD-1) domain is a protein module found in an expanding family of RNA-binding proteins. The numerous missense mutations identified genetically in the GSG domain support its physiological role. Although the exact function of the GSG domain is not known, it has been shown to be required for RNA binding and oligomerization. Here it is shown that the Sam68 GSG domain plays a role in protein localization. We show that Sam68 concentrates into novel nuclear structures that are predominantly found in transformed cells. These Sam68 nuclear bodies (SNBs) are distinct from coiled bodies, gems, and promyelocytic nuclear bodies. Electron microscopic studies show that SNBs are distinct structures that are enriched in phosphorus and nitrogen, indicating the presence of nucleic acids. A GFP-Sam68 fusion protein had a similar localization as endogenous Sam68 in HeLa cells, diffusely nuclear with two to five SNBs. Two other GSG proteins, the Sam68-like mammalian proteins SLM-1 and SLM-2, colocalized with endogenous Sam68 in SNBs. Different GSG domain missense mutations were investigated for Sam68 protein localization. Six separate classes of cellular patterns were obtained, including exclusive SNB localization and association with microtubules. These findings demonstrate that the GSG domain is involved in protein localization and define a new compartment for Sam68, SLM-1, and SLM-2 in cancer cell lines.
Resumo:
Induction of wild-type p53 in the ECV-304 bladder carcinoma cell line by infection with a p53 recombinant adenovirus (Ad5CMV-p53) resulted in extensive apoptosis and eventual death of nearly all of the cells. As a strategy to determine the molecular events important to p53-mediated apoptosis in these transformed cells, ECV-304 cells were selected for resistance to p53 by repeated infections with Ad5CMV-p53. We compared the expression of 5,730 genes in p53-resistant (DECV) and p53-sensitive ECV-304 cells by reverse transcription–PCR, Northern blotting, and DNA microarray analysis. The expression of 480 genes differed by 2-fold or more between the two p53-infected cell lines. A number of potential targets for p53 were identified that play roles in cell cycle regulation, DNA repair, redox control, cell adhesion, apoptosis, and differentiation. Proline oxidase, a mitochondrial enzyme involved in the proline/pyrroline-5-carboxylate redox cycle, was up-regulated by p53 in ECV but not in DECV cells. Pyrroline-5-carboxylate (P5C), a proline-derived metabolite generated by proline oxidase, inhibited the proliferation and survival of ECV-304 and DECV cells and induced apoptosis in both cell lines. A recombinant proline oxidase protein tagged with a green fluorescent protein at the amino terminus localized to mitochondria and induced apoptosis in p53-null H1299 non-small cell lung carcinoma cells. The results directly implicate proline oxidase and the proline/P5C pathway in p53-induced growth suppression and apoptosis.
Resumo:
We recently have shown that mice deficient for the 86-kDa component (Ku80) of the DNA-dependent protein kinase exhibit growth retardation and a profound deficiency in V(D)J (variable, diversity, and joining) recombination. These defects may be related to abnormalities in DNA metabolism that arise from the inability of Ku80 mutant cells to process DNA double-strand breaks. To further characterize the role of Ku80 in DNA double-strand break repair, we have generated embryonic stem cells and pre-B cells and examined their response to ionizing radiation. Ku80−/− embryonic stem cells are more sensitive than controls to γ-irradiation, and pre-B cells derived from Ku80 mutant mice display enhanced spontaneous and γ-ray-induced apoptosis. We then determined the effects of ionizing radiation on the survival, growth, and lymphocyte development in Ku80-deficient mice. Ku80−/− mice display a hypersensitivity to γ-irradiation, characterized by loss of hair pigmentation, severe injury to the gastrointestinal tract, and enhanced mortality. Exposure of newborn Ku80−/− mice to sublethal doses of ionizing radiation enhances their growth retardation and results in the induction of T cell-specific differentiation. However, unlike severe combined immunodeficient mice, radiation-induced T cell development in Ku80−/− mice is not accompanied by extensive thymocyte proliferation. The response of Ku80-deficient cell lines and mice to DNA-damaging agents provides important insights into the role of Ku80 in growth regulation, lymphocyte development, and DNA repair.
Resumo:
Cross-contamination between cell lines is a longstanding and frequent cause of scientific misrepresentation. Estimates from national testing services indicate that up to 36% of cell lines are of a different origin or species to that claimed. To test a standard method of cell line authentication, 253 human cell lines from banks and research institutes worldwide were analyzed by short tandem repeat profiling. The short tandem repeat profile is a simple numerical code that is reproducible between laboratories, is inexpensive, and can provide an international reference standard for every cell line. If DNA profiling of cell lines is accepted and demanded internationally, scientific misrepresentation because of cross-contamination can be largely eliminated.