869 resultados para Cell Morphology Analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Antineoplastic phospholipids (ALPs) represent a promising class of drugs with a novel mode of action undergoes rapid turnover in the cell membrane of tumors, interfering with lipid signal transduction, inducing cell death. The aim of this study was to investigate the synthetic phosphoethanolamine (Pho-s) as a new anticancer agent. Materials and Methods: Cell viability and morphology were assessed by (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Hoechst and rhodamine staining. Apoptosis was assessed by Annexin V and propidium iodide (PI) staining, caspase-3 activity, mitochondrial membrane potential (Delta m psi) and cell cycle analysis, combined with evaluation of tumor growth in Ehrlich Ascites Tumor (EAT) bearing mice. Results: We found that Pho-s 2.30 mg/ml induced cytotoxicity in all tumor cell lines studied without affecting normal cells. In vitro studies with EAT cells indicated that Pho-s induced apoptosis, demonstrated by an increase in Annexin-V positive cells, loss of mitochondrial potential (Delta m psi) and increased caspase-3 activity. It was also shown to increase the sub-G(1) apoptotic fraction and inhibit progression to the S phase of the cell cycle. Additionally, antitumor effects on the EAT-bearing mice showed that Pho-s, at a concentration of 35 and 70 mg/kg, inhibited tumor growth and increased the lifespan of animals without causing liver toxicity. Conclusion: These findings suggest that Pho-s is a potential anticancer candidate drug.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current study examined the role of PLD2 in the maintenance of mast cell structure. Phospholipase D (PLD) catalyzes hydrolysis of phosphatidylcholine to produce choline and phosphatidic acid (PA). PLD has two isoforms, PLD1 and PLD2, which vary in expression and localization depending on the cell type. The mast cell line RBL-2H3 was transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2. The results of this study show that PLD2CI cells have a distinct star-shaped morphology, whereas PLD2CA and RBL-2H3 cells are spindle shaped. In PLD2CI cells, the Golgi complex was also disorganized with dilated cisternae, and more Golgi-associated vesicles were present as compared with the PLD2CA and RBL-2H3 cells. Treatment with exogenous PA led to the restoration of the wild-type Golgi complex phenotype in PLD2CI cells. Conversely, treatment of RBL-2H3 and PLD2CA cells with 1% 1-Butanol led to a disruption of the Golgi complex. The distribution of acidic compartments, including secretory granules and lysosomes, was also modified in PLD2CI cells, where they concentrated in the perinuclear region. These results suggest that the PA produced by PLD2 plays an important role in regulating cell morphology in mast cells. (J Histochem Cytochem 60:386-396, 2012)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A nanocomposite based on bacterial cellulose (BC) and type I collagen (COL) was evaluated for in vitro bone regeneration. BC membranes were modified by glycine esterification followed by cross-linking of type I collagen employing 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Collagen incorporation was studied by spectroscopy analysis. X-Ray diffraction showed changes in the BC crystallinity after collagen incorporation. The elastic modulus and tensile strength for BC-COL decreased, while the strain at failure showed a slight increase, even after sterilization, as compared to pristine BC. Swelling tests and contact angle measurements were also performed. Cell culture experiments performed with osteogenic cells were obtained by enzymatic digestion of newborn rat calvarium revealed similar features of cell morphology for cultures grown on both membranes. Cell viability/proliferation was not different between BC and BC-COL membranes at day 10 and 14. The high total protein content and ALP activity at day 17 in cells cultured on BC-COL indicate that this composite allowed the development of the osteoblastic phenotype in vitro. Thus, BC-COL should be considered as alternative biomaterial for bone tissue engineering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Freshwater fish that live exclusively in rivers are at particular risk from fragmentation of the aquatic system, mainly the species that migrate upriver for reproduction. That is the case of Salminus hilarii, an important migratory species currently classified as “almost threatened” in the São Paulo State (Brazil), facing water pollution, dam construction, riparian habitat destruction and environmental changes that are even more serious in this State. Additionally, this species show ovulation dysfunction in captivity. Our studies focused on the identification and distribution of the pituitary cell types in the adenohypophysis of S. hilarii females, including a morphometric analysis that compares pituitary cells from wild and captive broodstocks during the reproductive annual cycle. The morphology of adenohypophysial cells showed differences following the reproductive cycle and the environment. In general, optical density suggested a higher cellular activity during the previtellogenic (growth hormone) and vitellogenic (somatolactin) stages in both environments. Additionally, the nucleus/cell ratio analysis suggested that growth hormone and somatolactin cells were larger in wild than in captive females in most reproductive stages of the annual cycle. In contrast, prolactin hormone showed no variation throughout the reproductive cycle (in both environments). Morphometrical analyses related to reproduction of S. hilarii in different environmental conditions, suggest that somatolactin and growth hormone play an important role in reproduction in teleost and can be responsible for the regulation of associated processes that indirectly affect reproductive status.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Freshwater fish that live exclusively in rivers are at particular risk from fragmentation of the aquatic system, mainly the species that migrate upriver for reproduction. That is the case of Salminus hilarii, an important migratory species currently classified as “almost threatened” in the São Paulo State (Brazil), facing water pollution, dam construction, riparian habitat destruction and environmental changes that are even more serious in this State. Additionally, this species show ovulation dysfunction in captivity. Our studies focused on the identification and distribution of the pituitary cell types in the adenohypophysis of S. hilarii females, including a morphometric analysis that compares pituitary cells from wild and captive broodstocks during the reproductive annual cycle. The morphology of adenohypophysial cells showed differences following the reproductive cycle and the environment. In general, optical density suggested a higher cellular activity during the previtellogenic (growth hormone) and vitellogenic (somatolactin) stages in both environments. Additionally, the nucleus/cell ratio analysis suggested that growth hormone and somatolactin cells were larger in wild than in captive females in most reproductive stages of the annual cycle. In contrast, prolactin hormone showed no variation throughout the reproductive cycle (in both environments). Morphometrical analyses related to reproduction of S. hilarii in different environmental conditions, suggest that somatolactin and growth hormone play an important role in reproduction in teleost and can be responsible for the regulation of associated processes that indirectly affect reproductive status.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cytotoxicity of dental composites has been attributed to the release of residual monomers from polymerized adhesive systems due to degradation processes or the incomplete polymerization of materials. 2-Hydroxyethyl methacrylate (HEMA) is one of the major components released from dental adhesives. Cytotoxic effects due to high concentrations of HEMA have already been investigated, but the influence of minor toxic concentrations for long-term exposition on specific proteins such as type I collagen and tenascin has not been studied in depth. The objective of this project was to study the effect of minor toxic concentrations of HEMA on human gingival fibroblasts (HGFs) and human pulp fibroblasts (HPFs), investigating modification in cell morphology, cell viability, and the influence on type I collagen and tenascin proteins. Different concentrations of the resin monomer and different times of exposition were tested on both cell lines. The cell vitality was determined by MTT assay, and high-resolution scanning electron microscopy analysis was performed to evaluate differences in cell morphology before and after treatment. To evaluate the variability in the expression and synthesis of procollagen α1 type I and tenascin proteins on HGFs and HPFs treated with HEMA at different concentrations immunofluorescence, RT-PCR and western blot analysis, were carried out. The treatments on HGFs with 3mmol/L HEMA, showed a strong reduction of procollagen α1 type I protein at 72h and 96h, demonstrating that HEMA interferes both with the synthesis of the procollagen α1 type I protein and its mRNA expression. The results obtained on HPFs treated with different concentrations of HEMA ranging from 0,5mmol/L to 3mmol/L and for different exposition times showed a strong reduction in cell viability in specimens treated for 96h and 168h, while immunofluorescence and western blotting analysis demonstrated a reduction of procollagen α1 type I and an overexpression of tenascin protein. In conclusion, our results showed that the concentrations of HEMA we tested, effect the normal cell production and activity, such as the synthesis of some dental extracellular matrix proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this PhD thesis was to evaluate the effect of a sub-lethal HPH treatment on some probiotic properties and on cell response mechanisms of already-known functional strains, isolated from Argentinean dairy products. The results achieved showed that HPH treatments, performed at a sub-lethal level of 50 MPa, increased some important functional and technological characteristics of the considered non intestinal probiotic strains. In particular, HPH could modify cell hydrophobicity, autoaggregation and resistance to acid gastric conditions (tested in in vitro model), cell viability and cell production of positive aroma compounds, during a refrigerate storage in a simulated dairy product. In addition, HPH process was able to increase also some probiotic properties exerted in vivo and tested for two of the considered strains. In fact, HPH-treated cells were able to enhance the number of IgA+ cells more than other not treated cells, although this capacity was time dependent. On the other hand, HPH treatment was able to modify some important characteristics that are linked to the cell wall and, consequently, could alter the adhesion capacity in vivo and the interaction with the intestinal cells. These modifications, involving cell outermost structures, were highlighted also by Trasmission Electron Microscopy (TEM) analysis. In fact, the micrographs obtained showed a significant effect of the pressure treatment on the cell morphology and particularly on the cell wall. Moreover, the results achieved showed that composition of plasma membranes and their level of unsaturation are involved in response mechanisms adopted by cells exposed to the sub-lethal HPH treatment. Although the response to the treatment varied according to the characteristics of individual strains, time of storage and suspension media employed, the results of present study, could be exploited to enhance the quality of functional products and to improve their organoleptic properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Das menschliche Gen human giant larvae (hugl) ist ein Homolog des hochkonservierten Drosophila Gens lethal giant larvae (lgl), welches in Epithelzellen die Funktion eines neoplastischen Tumorsuppressors und Polaritätsregulators einnimmt. Ein Verlust oder eine verminderte Expression beider Homologe des Gens, hugl-1 und hugl-2, geht einher mit dem Auftreten und der Progression verschiedener epithelialer Tumorerkrankungen wie malignen Melanomen und Brust-, Kolon- oder Lungentumoren. Die exakte Funktion der Homologe Hugl-1 und Hugl-2 bezüglich der Regulation und Aufrechterhaltung der epithelialen Zellpolarität sowie ihre Rolle in der Genese humaner Tumore ist jedoch weitgehend unbekannt. Gänzlich unbekannt ist auch die Bedeutung von Hugl-1 und Hugl-2 als Polaritätsregulatoren für die Ausbildung und den Erhalt der T-Zellmorphologie und -funktion. Ziel der vorliegenden Arbeit war es daher, die Polaritäts- und Tumorsuppressorgene hugl-1 und hugl-2 in funktionellen Analysen mittels siRNA-vermitteltem Gen-Silencing in Epithelzellen und T-Lymphozyten zu charakterisieren. Darüber hinaus wurden die Funktionen und Eigenschaften von mgl-2, dem murinen Homologen von hugl-2, im Cre/loxP-vermittelten konditionalen Knockout Mausmodell in vivo analysiert.rnrnZur Charakterisierung der biologischen Effekte von Hugl-1 und Hugl-2 auf das Wachstumsverhalten, Migration und Invasion von Epithelzellen wurden in dieser Arbeit erfolgreich unterschiedliche shRNA-Expressionskonstrukte generiert sowie Hugl-supprimierte Zelllinien etabliert. In vitro Studien sowie in vivo Tumorigenizitätsanalysen lieferten übereinstimmend Hinweise darauf, dass verminderte Hugl-1- und Hugl-2-Expressionsspiegel eine signifikante Rolle in der Vermittlung invasiver und tumorigener Eigenschaften von Epithelzellen spielen. Dabei rief der Verlust beider Homologe deutlich stärkere Reaktionen hervor als die Suppression eines einzelnen Homologen. Zudem wiesen die Überexpression des Zellzyklusregulators Cyclin D1 sowie die Hyperproliferation von Hugl-1- und/oder Hugl-2-depletierten Epithelzellen auf eine wichtige Rolle der beiden Homologe in der Zellzyklusprogression und Zellproliferation hin. Ein geringer Expressionsstatus von Hugl-1 und -2 schien darüber hinaus mit einer verstärkten Resistenzbildung gegenüber Chemotherapeutika zu korrelieren. Im Rahmen dieser Arbeit konnte weiterhin gezeigt werden, dass die untersuchten T-Lymphozyten nur Hugl-1 exprimieren und dass letzteres notwendig für den F-Aktin-vermittelten Erhalt der T-Zellpolarität und -morphologie ist. Hugl-1-supprimierte, über voneinander unabhängige Signalwege (TCR- oder Chemokinrezeptor) stimulierte T-Lymphozyten wiesen eine bedeutende Störung der Lamellipodien- und Uropodausbildung auf und ließen eine Interaktion von Hugl-1 auf Ebene des F Aktins vermuten. Des Weiteren zeigte sich, dass der Polaritätsregulator Hugl-1 die CD3/TCR-induzierte Zelladhäsion positiv beeinflusst. Die Analyse der T-Zellmigration und -motilität offenbarte in Übereinstimmung dazu die Wichtigkeit von Hugl-1 für die Polarisierung und Migration der T-Zellen sowohl im Chemokingradienten als auch auf mDCs. rnrnFür die Aufklärung der funktionellen Rolle von mgl-2 in vivo wurde in dieser Arbeit eine Tamoxifen-induzierbare, Cre/loxP-vermittelte konditionale Mauslinie generiert und analysiert. Die mgl-2-deletierten Tiere wiesen weder signifikante phänotypische Unterschiede noch Abweichungen in der Organanatomie auf und ließen daher auf eine Kompensation durch das im Darmepithel koexprimierte und möglicherweise funktionell redundante mgl-1 Gen schließen.rn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CD34 (+) progenitor cells are a promising source of regeneration in atherosclerosis or ischemic heart disease. However, as recently published, CD34(+) progenitor cells have the potential to differentiate not only into endothelial cells but also into foam cells upon interaction with platelets. The mechanism of platelet-induced differentiation of progenitor cells into foam cells is as yet unclear. In the present study we investigated the role of scavenger receptor (SR)-A and CD36 in platelet-induced foam cell formation. Human CD34(+) progenitor cells were freshly derived from human umbilical veins and were co-incubated with platelets (2 x 10(8)/mL) up to 14 days resulting in large lipid-laden foam cells. Developing macrophages expressed SR-A, CD36, and Lox-1 as measured by fluorescent-activated cell sorting analysis. The presence of a blocking anti-CD36 or anti-SR-A antibody nearly abrogated foam cell formation, whereas anti-Lox-1 did not affect foam cell formation. Consistently blocking either anti-CD36 or anti-SR-A antibody significantly reduced the phagocytosis of lipid-laden platelets by macrophages. We conclude that CD36 and SR-A play an important role in platelet-induced foam cell formation from CD34(+) progenitor cells and thus represent a promising target to inhibit platelet-induced foam cell formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Theileria annulata is an intracellular protozoan parasite that infects B cells and macrophages of ruminants. Macrophages infected with T. annulata are de-differentiated and display tumour cell properties and a metastatic behaviour. How parasitized cells adapt their morphology, motility and invasive behaviour has not yet been addressed in detail. In this study, I investigated the regulation of host cell actin dynamics in T. annulata-transformed macrophages and how this affects host cell morphology and motility. T. annulata was found to promote the formation of filamentous-actin-rich podosome-type adhesions (PTAs) and lamellipodia, and to establish a polarized morphology of the infected cell. Characteristic for parasite-dependent host cell polarization is that infected cells display a single, persistent lamellipodium. Src kinases--in particular Hck--are required for the polar extension of this lamellipodium. Hck does so by promoting the clustered assembly of PTAs and accumulation of proteins of the Ezrin, Radixin, Moesin (ERM) family in lamellipodia. Polar accumulation of PTAs and ERM proteins correlates with focal matrix degradation underneath lamellipodia. These findings suggest that T. annulata equips its host cell with properties to adhere and invade. These properties are likely to promote the motile behaviour required for dissemination of infected cells in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: The aim of the present study was to investigate whether bone marrow-derived cells (BMCs) can be induced to express retinal pigment epithelial (RPE) cell markers in vitro and can home to the site of RPE damage after mobilization and express markers of RPE lineage in vivo. METHODS: Adult RPE cells were cocultured with green fluorescence protein (GFP)-labeled stem cell antigen-1 positive (Sca-1(+)) BMCs for 1, 2, and 3 weeks. Cell morphology and expression of RPE-specific markers and markers for other retinal cell types were studied. Using an animal model of sodium iodate (NaIO(3))-induced RPE degeneration, BMCs were mobilized into the peripheral circulation by granulocyte-colony stimulating factor, flt3 ligand, or both. Immunocytochemistry was used to identify and characterize BMCs in the subretinal space in C57BL/6 wild-type (wt) mice and GFP chimeric mice. RESULTS: In vitro, BMCs changed from round to flattened, polygonal cells and expressed cytokeratin, RPE65, and microphthalmia transcription factor (MITF) when cocultured in direct cell-cell contact with RPE. In vivo, BMCs were identified in the subretinal space as Sca-1(+) or c-kit(+) cells. They were also double labeled for GFP and RPE65 or MITF. These cells formed a monolayer on the Bruch membrane in focal areas of RPE damage. CONCLUSIONS: Thus, it appears that BMCs, when mobilized into the peripheral circulation, can home to focal areas of RPE damage and express cell markers of RPE lineage. The use of endogenous BMCs to replace damaged retinal tissue opens new possibilities for cell replacement therapy in ophthalmology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RATIONALE: Pulmonary complications of hematopoietic stem cell transplantation include infections and graft-versus-host diseases, such as idiopathic pneumonia syndrome (IPS). Conflicting data exist regarding the role of the interferon (IFN)-gamma-producing Th1 CD4(+) T-cell subset and IL-17A in IPS. OBJECTIVES: To determine the role of IFN-gamma and IL-17A in the establishment of pulmonary graft-versus-host disease. METHODS: A semiallogeneic murine model based on C57BL/6 x BALB/c as recipients with transplantation of BALB/c RAG2(-/-) bone marrow and transfer of different genetic knockout T cells (T-bet(-/-), IFN-gamma(-/-), IFN-gammaR(-/-)) on a BALB/c background. Lung tissue was examined for parenchymal changes and infiltrating cells by histology and fluorescence-activated cell sorter analysis. MEASUREMENTS AND MAIN RESULTS: After transfer of semiallogeneic bone marrow together with donor CD4(+) T cells lacking IFN-gamma or T-bet-a T-box transcription factor controlling Th1 commitment-we found severe inflammation in the lungs, but no enhancement in other organs. In contrast, wild-type donor CD4(+) T cells mediated minimal inflammation only, and donor CD8(+) T cells were not required for IPS development. Mechanistically, the absence of IFN-gamma or IFN-gamma signaling in pulmonary parenchymal cells promoted expansion of IL-17A-producing CD4(+) T cells and local IL-17A release. In vivo depletion of IL-17A reduced disease severity. CONCLUSIONS: One mechanism of IFN-gamma protection against IPS is negative regulation of the expansion of pathogenic IL-17A-producing CD4(+) T cells through interaction with the IFN-gamma receptor on the pulmonary parenchymal cell population.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: With current treatment strategies, nearly half of all medulloblastoma (MB) patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to cause anaplasia and correlate with unfavorable prognosis. METHODS: To study the role of c-MYC in MB biology, we down-regulated c-MYC expression by using small interfering RNA (siRNA) and investigated changes in cellular proliferation, cell cycle analysis, apoptosis, telomere maintenance, and response to ionizing radiation (IR) and chemotherapeutics in a representative panel of human MB cell lines expressing different levels of c-MYC (DAOY wild-type, DAOY transfected with the empty vector, DAOY transfected with c-MYC, D341, and D425). RESULTS: siRNA-mediated c-MYC down-regulation resulted in an inhibition of cellular proliferation and clonogenic growth, inhibition of G1-S phase cell cycle progression, and a decrease in human telomerase reverse transcriptase (hTERT) expression and telomerase activity. On the other hand, down-regulation of c-MYC reduced apoptosis and decreased the sensitivity of human MB cells to IR, cisplatin, and etoposide. This effect was more pronounced in DAOY cells expressing high levels of c-MYC when compared with DAOY wild-type or DAOY cells transfected with the empty vector. CONCLUSION: In human MB cells, in addition to its roles in growth and proliferation, c-MYC is also a potent inducer of apoptosis. Therefore, targeting c-MYC might be of therapeutic benefit when used sequentially with chemo- and radiotherapy rather than concomitantly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although vascular endothelial growth factor (VEGF) has been described as a potent angiogenic stimulus, its application in therapy remains difficult: blood vessels formed by exposure to VEGF tend to be malformed and leaky. In nature, the principal form of VEGF possesses a binding site for ECM components that maintain it in the immobilized state until released by local cellular enzymatic activity. In this study, we present an engineered variant form of VEGF, alpha2PI1-8-VEGF121, that mimics this concept of matrix-binding and cell-mediated release by local cell-associated enzymatic activity, working in the surgically-relevant biological matrix fibrin. We show that matrix-conjugated alpha2PI1-8-VEGF121 is protected from clearance, contrary to native VEGF121 mixed into fibrin, which was completely released as a passive diffusive burst. Grafting studies on the embryonic chicken chorioallantoic membrane (CAM) and in adult mice were performed to assess and compare the quantity and quality of neovasculature induced in response to fibrin implants formulated with matrix-bound alpha2PI1-8-VEGF121 or native diffusible VEGF121. Our CAM measurements demonstrated that cell-demanded release of alpha2PI1-8-VEGF121 increases the formation of new arterial and venous branches, whereas exposure to passively released wild-type VEGF121 primarily induced chaotic changes within the capillary plexus. Specifically, our analyses at several levels, from endothelial cell morphology and endothelial interactions with periendothelial cells, to vessel branching and network organization, revealed that alpha2PI1-8-VEGF121 induces vessel formation more potently than native VEGF121 and that those vessels possess more normal morphologies at the light microscopic and ultrastructural level. Permeability studies in mice validated that vessels induced by alpha2PI1-8-VEGF121 do not leak. In conclusion, cell-demanded release of engineered VEGF121 from fibrin implants may present a therapeutically safe and practical modality to induce local angiogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spine is routinely subjected to repetitive complex loading consisting of axial compression, torsion, flexion and extension. Mechanical loading is one of the important causes of spinal diseases, including disc herniation and disc degeneration. It is known that static and dynamic compression can lead to progressive disc degeneration, but little is known about the mechanobiology of the disc subjected to combined dynamic compression and torsion. Therefore, the purpose of this study was to compare the mechanobiology of the intervertebral disc when subjected to combined dynamic compression and axial torsion or pure dynamic compression or axial torsion using organ culture. We applied four different loading modalities 1. control: no loading (NL), 2. cyclic compression (CC), 3. cyclic torsion (CT), and 4. combined cyclic compression and torsion (CCT) on bovine caudal disc explants using our custom made dynamic loading bioreactor for disc organ culture. Loads were applied for 8 h/day and continued for 14 days, all at a physiological magnitude and frequency. Our results provided strong evidence that complex loading induced a stronger degree of disc degeneration compared to one degree of freedom loading. In the CCT group, less than 10\% nucleus pulposus (NP) cells survived the 14 days of loading, while cell viabilities were maintained above 70\% in the NP of all the other three groups and in the annulus fibrosus (AF) of all the groups. Gene expression analysis revealed a strong up-regulation in matrix genes and matrix remodeling genes in the AF of the CCT group. Cell apoptotic activity and glycosaminoglycan content were also quantified but there were no statistically significant differences found. Cell morphology in the NP of the CCT was changed, as shown by histological evaluation. Our results stress the importance of complex loading on the initiation and progression of disc degeneration.