978 resultados para Cardiovascular system - Diseases - Thesis
Resumo:
We report on the cardiovascular effects of L-glutamate (L-glu) microinjection into the hypothalamic paraventricular nucleus (PVN) as well as the mechanisms involved in their mediation. L-glu microinjection into the PVN caused dose-related pressor and tachycardiac responses in unanesthetized rats. These responses were blocked by intravenous (i.v.) pretreatment with the ganglion blocker pentolinium (PE; 5 mg/kg), suggesting sympathetic mediation. Responses to L-glu were not affected by local microinjection of the selective non-NMDA receptor antagonist NBQX (2 nmol) or by local microinjection of the selective NMDA receptor antagonist LY235959 (LY; 2 nmol). However, the tachycardiac response was changed to a bradycardiac response after treatment with LY235959, suggesting that NMDA receptors are involved in the L-glu heart rate response. Local pretreatment with LY235959 associated with systemic PE or dTyr(CH(2))(5)(Me)AVP (50 mu g/kg) respectively potentiated or blocked the response to L-glu, suggesting that L-glu responses observed after LY235959 are vasopressin mediated. The increased pressor and bradycardiac responses observed after LY + PE was blocked by subsequent i.v. treatment with the V(1)-vasopressin receptor antagonist dTyr(CH(2))(5)(Me)AVP, suggesting vasopressin mediation. The pressor and bradycardiac response to L-glu microinjection into the PVN observed in animals pretreated with LY + PE was progressively inhibited and even blocked by additional pretreatment with increasing doses of NBQX (2, 10, and 20 nmol) microinjected into the PVN, suggesting its mediation by local non-NMDA receptors. In conclusion, results suggest the existence of two glutamatergic pressor pathways in the PVN: one sympathetic pathway that is mediated by NMDA receptors and a vasopressinergic pathway that is mediated by non-NMDA receptors. (C) 2009 Wiley-Liss, Inc.
Resumo:
The medial amygdaloid nucleus (MeA) modulates several physiological and behavioral processes and among them, the cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint evokes cardiovascular responses, which are characterized by both elevated blood pressure (BP) and intense heart rate (HR) increase. We presently report effects of MeA pharmacological manipulations on BP and HR responses evoked by acute restraint in rats. Bilateral microinjection of 100 nL of the unspecific synaptic blocker COCl(2) (1 mM) into the MeA increased HR response to acute restraint, without significant effect on the BP response. This result indicates an inhibitory influence of MeA on restraint-evoked HR changes. Injections of the non-selective muscarinic receptor antagonist atropine (3 nmol); the inhibitor of choline uptake hemicholinium (2 nmol) or the selective M(1)-receptor antagonist pirenzepine (6 nmol) caused effects that were similar to those caused by cobalt. These results suggest that local cholinergic neurotransmission and M(1)-receptors mediate the MeA inhibitory influence on restraint-related HR responses. Pretreatment with the M3 receptor antagonist 4-DAMP (4-Diphenylacetoxy-N-methylpiperidine methiodide-2 nmol) did not affect restraint-related cardiovascular responses, reinforcing the idea that M(1)-receptors mediate MeA-related inhibitory influence on restraint-evoked HR increase. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to test the hypothesis that the bed nucleus of the stria terminalis (BST) and noradrenergic neurotransmission therein mediate cardiovascular responses to acute restraint stress in rats. Bilateral microinjection of the non-specific synaptic blocker CoCl2 (0.1nmol/100nl) into the BST enhanced the heart rate (HR) increase associated with acute restraint without affecting the blood pressure increase, indicating that synapses within the BST influence restraint-evoked HR changes. BST pretreatment with the selective 1-adrenoceptor antagonist WB4101 (15nmol/100nl) caused similar effects to cobalt, indicating that local noradrenergic neurotransmission mediates the BST inhibitory influence on restraint-related HR responses. BST treatment with equimolar doses of the 2-adrenoceptor antagonist RX821002 or the -adrenoceptor antagonist propranolol did not affect restraint-related cardiovascular responses, reinforcing the inference that 1-adrenoceptors mediate the BST-related inhibitory influence on HR responses. Microinjection of WB4101 into the BST of rats pretreated intravenously with the anticholinergic drug homatropine methyl bromide (0.2mg/kg) did not affect restraint-related cardiovascular responses, indicating that the inhibitory influence of the BST on the restraint-evoked HR increase could be related to an increase in parasympathetic activity. Thus, our results suggest an inhibitory influence of the BST on the HR increase evoked by restraint stress, and that this is mediated by local 1-adrenoceptors. The results also indicate that such an inhibitory influence is a result of parasympathetic activation.
Resumo:
The medial amygdaloid nucleus (MeA) is involved in the modulation of physiological and behavioral processes, as well as regulation of the autonomic nervous system. Moreover, MeA electrical stimulation evokes cardiovascular responses. Thus, as noradrenergic receptors are present in this structure, the present study tested the effects of local noradrenaline (NA) microinjection into the MeA on cardiovascular responses in conscious rats. Moreover, we describe the types of adrenoceptor involved and the peripheral mechanisms involved in the cardiovascular responses. Increasing doses of NA (3, 9, 27 or 45 nmol/100 nL) microinjected into the MeA of conscious rats caused dose-related pressor and bradycardic responses. The NA cardiovascular effects were abolished by local pretreatment of the MeA with 10 nmol/100 nL of the specific alpha(2)-receptor antagonist RX821002, but were not affected by local pretreatment with 10 nmol/100 nL of the specific alpha(1)-receptor antagonist WB4101. The magnitude of pressor response evoked by NA microinjected into the MeA was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), and blocked by intravenous pretreatment with the selective V(1)-vasopressin antagonist dTyr(CH(2))(5)(Me)AVP (50 mu g/kg). In conclusion, our results show that microinjection of NA into the MeA of conscious rats activates local alpha(2)-adrenoceptors, evoking pressor and bradycardic responses, which are mediated by vasopressin release.
Resumo:
We have previously reported that L-glutamate (L-glu) injected into the ventral portion of medial prefrontal cortex (vMPFC) of unanesthetized normotensive Wistar rats elicited cardiovascular responses. In the present study we investigated whether the spontaneously hypertensive rat (SHR) exhibit abnormal cardiovascular responses after L-glu microinjection in the vMPFC. Microinjections of L-glu (3, 9, 27, 81 or 150 nmol/200 nl) caused long-lasting dose-related depressor and bradycardiac responses in unanesthetized SHR (n = 6, each dose). Pressor and tachycardiac responses were evoked after the injection of 81 nmol of L-glu in the vMPFC of normotensive Wistar rats (n=6). Systemic pretreatment with the betal-adrenoceptor antagonist atenolol (1.5 mg/kg, i.v.) had no effect on L-glu cardiovascular responses evoked in the SHR (n=5). However, the treatment with the muscarinic antagonist homatropine methyl bromide (I mg/kg, i.v.) blocked the bradycardiac response to L-glu, without significant effects on depressor response evoked by L-glu in the SHR (n = 5). These results indicate that the bradycardiac response to the injection of L-glu injection in the vMPFC is due to activation of the parasympathetic system and not to inhibition of the cardiac sympathetic input. In conclusion, results indicate opposite cardiovascular responses when L-glu was microinjected in the vMPFC of unanesthetized SHR or normotensive. The bradycardiac response observed in the SHR was due to parasympathetic activation and was not affected by pharmacological blockade of the cardiac sympathetic output. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background and purpose: We have previously shown that noradrenaline microinjected into the bed nucleus of stria terminalis (BST) elicited pressor and bradycardiac responses in unanaesthetized rats. In the present study, we investigated the subtype of adrenoceptors that mediates the cardiovascular response to noradrenaline microinjection into the BST. Experimental approach: Cardiovascular responses following noradrenaline microinjection into the BST of male Wistar rats were studied before and after BST pretreatment with different doses of the selective alpha(1)-adrenoceptor antagonist WB4101, the alpha(2)-adrenoceptor antagonist RX821002, the combination of WB4101 and RX821002, the non-selective beta-adrenoceptor antagonist propranolol, the selective beta(1)-adrenoceptor antagonist CGP20712 or the selective beta(2)-adrenoceptor antagonist ICI118,551. Key results: Noradrenaline microinjected into the BST of unanaesthetized rats caused pressor and bradycardiac responses. Pretreatment of the BST with different doses of either WB4101 or RX821002 only partially reduced the response to noradrenaline. However, the response to noradrenaline was blocked when WB4101 and RX821002 were combined. Pretreatment with this combination also shifted the resulting dose-effect curve to the left, clearly showing a potentiating effect of this antagonist combination. Pretreatment with different doses of either propranolol or CGP20712 increased the cardiovascular responses to noradrenaline microinjected into the BST. Pretreatment with ICI118,551 did not affect cardiovascular responses to noradrenaline. Conclusion and implications: The present results indicate that alpha(1) and alpha(2)-adrenoceptors mediate the cardiovascular responses to noradrenaline microinjected into the BST. In addition, they point to an inhibitory role played by the activation of local beta(1)-adrenoceptors in the cardiovascular response to noradrenaline microinjected into the BST.
Resumo:
Microinjection Of L-glutamate (L-glu: 1, 3, 10 and 30nmol/100nL) into the lateral hypothalamus (LH) caused dose-related depressor and bradycardiac responses. The cardiovascular response to L-glu stimulation of the LH was blocked by pretreatment of the ventrolateral portion of the periaqueductal gray matter (vIPAG) with CoCl(2) (1 mM/100nL), indicating the existence of a synaptic relay of the hypotensive pathway in that area. Furthermore, the response to L-glu Was blocked by pretreatment of the vIPAG with 2 nmol/100 nL of the selective NMDA-receptor antagonist LY235959 and was not affected by pretreatment with 2 nmol/100 nL of the selective non-NMDA-receptor antagonist NBQX, suggesting a mediation of the hypotensive response by NMDA receptors in the APAG. In conclusion, our results indicate that the hypotensive pathway activated by microinjection Of L-glu into the LH involves a NMDA synaptic relay in the vIPAG. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In the present study, we describe the cardiovascular effects of local acetylcholine (Ach) microinjection into both the ventrolateral (vlPAG) and dorsal (dPAG) periaqueductal gray areas of anesthetized rats and the possible local receptors involved with these responses. Microinjection of Ach (9, 27, 45 or 81 nmol/50 nL) into the vlPAG caused dose-related depressor responses. These hypotensive responses were blocked by local pretreatment with increasing doses of the nonselective muscarinic antagonist atropine (1, 3 or 9 nmol/50 nL). The microinjection of Ach into the dPAG caused no significant cardiovascular responses in anesthetized rats. In conclusion, the present findings suggest that a cholinergic system present in the vlPAG, but not in the dPAG, is involved with cardiovascular system control. Moreover, these cardiovascular responses evoked by Ach are mediated by muscarinic receptors. (C) 2010 Elsevier B.V. All rights reserved.