998 resultados para Cardiovascular remodeling
Resumo:
Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h-1) on a rodent treadmill before and after BST treatment with CoCl(2), a non-selective neurotransmission blocker. Bilateral microinjection of CoCl(2) (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h-1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h-1. The BST treatment with CoCl(2) did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl(2) did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.
Resumo:
The superior colliculus (SC) is a mesencephalic area involved in the mediation of defensive movements associated with cardiovascular changes. Noradrenaline (NA) is a neurotransmitter with an important role in central cardiovascular regulation exerted by several structures of the central nervous system. Although noradrenergic nerve terminals have been observed in the SC, there are no reports on the effects of local NA injection into this area. Taking this into consideration, we studied the cardiovascular effects of NA microinjection into the SC of unanesthetized rats. Microinjection of NA into the SC evoked a dose-dependent blood pressure increase and a heart rate decrease in unanesthetized rats. The pressor response to NA was not modified by intravenous pretreatment with the vasopressin v(1)-receptor antagonist dTyr(CH(2))(5) (Me)AVP, indicating a lack of vasopressin involvement in the response mediation. The effect of NA microinjection into the SC was blocked by intravenous pretreatment with the ganglionic blocker pentolinium, indicating its mediation by the sympathetic nervous system. Although the pressor response to NA was not affected by adrenal demedullation, the accompanying bradycardia was potentiated, suggesting some involvement of the sympathoadrenal system in the cardiovascular response to NA microinjection into the SC. In summary, results indicate that stimulation of noradrenergic receptors in the SC causes cardiovascular responses which are mediated by activation of both neural and adrenal sympathetic nervous system components. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Microinjection of the cholinergic agonist carbachol into the bed nucleus of the stria terminalis (BST) has been reported to cause pressor response in unanesthetized rats, which was shown to be mediated by an acute release of vasopressin into the systemic circulation and followed by baroreflex-mediated bradycardia. In the present study, we tested the possible involvement of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei in the pressor response evoked by carbachol microinjection into the BST of unanesthetized rats. For this, cardiovascular responses following carbachol (1 nmol/100 nL) microinjection into the BST were studied before and after PVN or SON pretreatment, either ipsilateral or contralateral in relation to BST microinjection site, with the nonselective neurotransmission blocker cobalt chloride (CoCl(2), 1 mM/100 nL). Carbachol microinjection into the BST evoked pressor response. Moreover, BST treatment with carbachol significantly increased plasma vasopressin levels, thus confirming previous evidences that carbachol microinjection into the BST evokes pressor response due to vasopressin release into the circulation. SON pretreatment with CoCl(2), either ipsilateral or contralateral in relation to BST microinjection site, inhibited the pressor response to carbachol microinjection into the BST. However, CoCl(2) microinjection into the ipsilateral or contralateral PVN did not affect carbachol-evoked pressor response. In conclusion, our results suggest that pressor response to carbachol microinjection into the BST is mediated by SON magnocellular neurons, without significant involvement of those in the PVN. The results also indicate that responses to carbachol microinjection into the BST are mediated by a neural pathway that depends on the activation of both ipsilateral and contralateral SON. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: The study was conducted to evaluate the cardiovascular risk markers associated with endometriosis and the influence of the levonorgestrel intrauterine system (LNG-TUS) compared with the GnRH analogue (GnRHa) leuprolide acetate on these risk markers after 6 months of treatment. Study Design: This was a randomized, prospective, open clinical Study, with 44 patients with laparoscopically and histologically confirmed endometriosis. Patients were randomized into two groups: the LNG-IUS group, composed of 22 patients who underwent LNG-IUS insertion., and the GnRHa group, composed of 22 patients who received a monthly GnRHa injection for 6 months. Body mass index systolic and diastolic arterial blood pressure; heart rate; and laboratory cardiovascular risk markers such as interlelikin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), C-reactive protein (CRP), homocysteine (HMC), lipid profile, total leukocytes and vascular cell adhesion molecule (VCAM) were measured before and 6 months after treatment. Results: After 6 months of treatment, a significant reduction in pain score occurred in both groups with no significant difference in improvement between the two medications evaluated. In the LNG-IUS group, from pretreatment to posttreatment period, there was a significant reduction in the levels (mean +/- SD) of VCAM (92.8 +/- 4.2 to 91.2 +/- 2.7 ng/mL, p=.04), CRP (0.38 +/- 0.30 to 0.28 +/- 0.21 mg/dL, p=.03), total cholesterol (247.0 +/- 85.0 to 180.0 +/- 31.0 mg/dL, p=.0002), triglycerides (118.0 +/- 76.0 to 86.5 +/- 41.5 mg/dL, p=.003), low-density lipoprotein cholesterol (160.5 +/- 66.0 to 114.5 +/- 25.5 mg/dL, p=.0005) and high-density lipoprotein cholesterol (63.0 +/- 20.5 to 48.5 +/- 10.5 mg/dL, p=.002). The GnRHa group showed an increase in HMC levels (11.5 +/- 2.9 to 13.0 +/- 2.7 mu mol/L, p=.04) and a reduction in IL-6 levels (4.3 +/- 3.9 to 2.3 +/- 0.8 pg/mL, p=.005), VCAM (94.0 +/- 3.8 to 92.0 +/- 1.6 ng/mL, p=.03) and total leukocytes (7330 +/- 2554 to 6350 +/- 1778, p=.01). In the GnRH group, the remaining variables, including lipid profile, did not show any statistical difference. Conclusions: This study shows that some cardiovascular risk markers are influenced by both GnRHa and the LNG-TUS, but the latter had a greater positive impact on the lipid profile, which could lead to a favorable effect during long-term treatment. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The African (Protopterus sp.) and South American lungfish (Lepidosiren paradoxa) inhabit shallow waters, that seasonally dry out, which induces aestivation and cocoon formation in Protopterus. Differently, L. paradoxa has no cocoon, and it aestivates in a simple burrow. In water PaCO(2) is 21.8 +/- 0.4 mmHg (mean values +/- S.E.M.; n = 5), whereas aestivation for 20 days increased PaCO(2) to as much as 37.6 +/- 2.1 mmHg, which remained the same after 40 days (35.8 +/- 3.3 mmHg). Concomitantly. the plasma [HCO(3)(-)]-values for animals in water were 22.5 +/- 0.5 mM, which after 20 days increased to 40.2 +/- 2.3 mM and after 40 days to 35.8 +/- 3.3 mM. Initially in water, PaO(2) was 87.7 +/- 2.0 mmHg, but 20 days in aestivation reduced the value to 80.5 +/- 2.2 and later (40 days) to 77.1 +/- 3.0 mmHg. Meanwhile, aestivation had no effect on pHa and hematocrit. The blood pressures were equal for animals in the water or in the burrow (P(mean) similar to 30 mmHg), and cardiac frequency (f(H)) fell from 31 beats min(-1) to 22 beats min(-1) during 40 days of aestivation. The osmolality (mOsm kg H(2)O(-1)) was elevated after 20 and 40 days of aestivation but declined upon return to water. The transition front activity to aestivation involves new set-points for the variables that determine the acid-base status and PaO(2) of the animals, along with a reduction of cardiac frequency. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Interventional cardiology for paediatric and congenital cardiac disease is a relatively young and rapidly evolving field. As the profession begins to establish multi-institutional databases, a universal system of nomenclature is necessary for the field of interventional cardiology for paediatric and congenital cardiac disease. The purpose of this paper is to present the results of the efforts of The International Society for Nomenclature of Paediatric and Congenital Heart Disease to establish a system of nomenclature for cardiovascular catheterisation for congenital and paediatric cardiac disease, focusing both on procedural nomenclature and on the nomenclature of complications associated with interventional cardiology. This system of nomenclature for cardiovascular catheterisation for congenital and paediatric cardiac disease is a component of The International Paediatric and Congenital Cardiac Code. This manuscript is the first part of a two-part series. Part 1 will cover the procedural nomenclature associated with interventional cardiology as treatment for paediatric and congenital cardiac disease. This procedural nomenclature of The International Paediatric and Congenital Cardiac Code will be used in the IMPACT Registry (TM) (IMproving Pediatric and Adult Congenital Treatment) of the National Cardiovascular Data Registry (R) of The American College of Cardiology. Part 2 will cover the nomenclature of complications associated with interventional cardiology as treatment for paediatric and congenital cardiac disease.
Resumo:
Interventional cardiology for paediatric and congenital cardiac disease is a relatively young and rapidly evolving field. As the profession begins to establish multi-institutional databases, a universal system of nomenclature is necessary for the field of interventional cardiology for paediatric and congenital cardiac disease. The purpose of this paper is to present the results of the efforts of The International Society for Nomenclature of Paediatric and Congenital Heart Disease to establish a system of nomenclature for cardiovascular catheterisation for congenital and paediatric cardiac disease, focusing both on procedural nomenclature and the nomenclature of complications associated with interventional cardiology. This system of nomenclature for cardiovascular catheterisation for congenital and paediatric cardiac disease is a component of The International Paediatric and Congenital Cardiac Code. This manuscript is the second part of the two-part series. Part 1 covered the procedural nomenclature associated with interventional cardiology as treatment for paediatric and congenital cardiac disease. Part 2 will cover the nomenclature of complications associated with interventional cardiology as treatment for paediatric and congenital cardiac disease.
Resumo:
The South American lungfish (Lepidosiren paradoxa) has an arterial P(O2), (Pa(O2)) as high as 70-100 mm Hg, corresponding to Hb-O(2) saturations from 90% to 95%, which indicates a moderate cardiovascular right to left (R-L) shunt. In hyperoxia (50% O(2)), we studied animals in: (1) aerated water combined with aerial hyperoxia, which increased Pa(O2) from 78 +/- 2 to 114 +/- 3 mm Hg and (2) and aquatic hyperoxia (50% O(2)) combined room air, which gradually increased Pa(O2) from 75 +/- 4 mm Hg to as much as 146 +/- 10 mm Hg. Further, the hyperoxia (50%) depressed pulmonary ventilation from 58 +/- 13 to 5.5 +/- 3.0 mLBTPS kg h(-1), and Pa(CO2) increased from 20 +/- 2 to 31 +/- 4 mm Hg, while pHa became reduced from 7.56 +/- 0.03 to 7.31 +/- 0.09. At the same time, venous P(O2) (Pv(O2)) rose from 40.0 +/- 2.3 to 46.4 +/- 1.2 mm Hg and, concomitantly, Pvco, increased from 23.2 +/- 1.1 to 32.2 +/- 0.5 mm Hg. R-L shunts were estimated to about 19%, which is moderate when compared to most amphibians. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We assessed the role of NK-1 receptors (NK1R) expressing neurons in the locus coeruleus (LC) on cardiorespiratory responses to hypercapnia. To this end, we injected substance P-saporin conjugate (SP-SAP) to kill NK-1 immunoreactive (NK1R-ir) neurons or SAP alone as a control. Immunohistochemistry for NK1R, tyrosine hydroxylase (TH-ir) and Glutamic Acid Decarboxylase (GAD-ir) were performed to verify if NK1R-expressing neurons, catecholaminergic and/or GABAergic neurons were eliminated. A reduced NK1R-ir in the LC (72%) showed the effectiveness of the lesion. SP-SAP lesion also caused a reduction of TH-ir (66%) and GABAergic neurons (70%). LC SP-SAP lesion decreased by 30% the ventilatory response to 7% CO(2) and increased the heart rate (fH) during hypercapnia but did not affect MAP. The present data suggest that different populations of neurons (noradrenergic, GABAergic, and possibly others) in the LC express NK1R modulating differentially the hypercapnic ventilatory response, since catecholaminergic neurons are excitatory and GABAergic ones are inhibitory. Additionally, NK1R-ir neurons in the LC, probably GABAergic ones, seem to modulate fH during CO(2) exposure, once our previous data demonstrated that catecholaminergic lesion does not affect this variable. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background: The aim of this study was to evaluate the cardiovascular effects of maxillary infiltration using 2% lidocaine with 1: 100 000 adrenaline, 4% articaine with 1: 200 000 adrenaline, and 4% articaine with 1: 100 000 adrenaline in different stages during restorative dental procedures. Methods: Twenty healthy patients randomly received 1.8 mL of the three local anaesthetics. Systolic blood pressure, average blood pressure, diastolic blood pressure, and heart rate were evaluated by the oscillometric and photoplethysmograph methods in seven stages during the appointment. Results: Statistical analysis by ANOVA and Tukey tests of cardiovascular parameters did not show significant differences between the anaesthetic associations. There were significant differences for the parameters among different clinical stages. Conclusions: The variation of cardiovascular parameters was similar for lidocaine and articaine with both adrenaline concentrations and showed no advantage of one drug over the other. Cardiovascular parameters were influenced by the stages of the dental procedures, which showed the effect of anxiety during restorative dental treatment.
Resumo:
Fibrous dysplasia is a benign fibro-osseous disease that affects one or more bones. Although its etiology has been defined, the mechanism of spontaneous resolution is still unclear. There is strong evidence indicating the occurrence of stabilization when bone maturation is completed. Deformities that lead to esthetic and functional disorders are observed in almost all cases. Plastic surgery is often recommended when the maxilla and mandible are involved. In the case of mild deformities, careful follow-up during skeletal growth is recommended. We describe here the 23-year follow-up of a patient with monostotic fibrous dysplasia whose disease had stabilized by 13 years of follow-up. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 229-234)
Resumo:
Large bone defects represent major clinical problems in the practice of reconstructive orthopedic and craniofacial surgery. The aim of this study was to examine, through immunohistochemistry approach, the involvement of MMP-9 and CD68(+) cells during tissue remodeling in response to natural hydroxyapatite (HA) implanted in rat subcutaneous tissue. Before experimentation, forty animals were randomly distributed into two experimental groups: Group-I (Gen-Ox (TM) micro-granules) and Group-II (Gen-Ox (TM) macro-granules). Afterwards, the biopsies were collected after 10, 20, 30, and 60 days post-implantation. Our results showed that at 10 days, a low-renewal foreign body type granuloma formation was observed in most of the cases. Macrophage- and fibroblast-like cells were the predominant type of cells positively stained for MMP-9 in both groups. Once macrophage-like cells seemed to be the major source of MMP9, antibody against pan-CD68 epitope was used to correlate these findings. In agreement, MMP-9 and CD68(+) cells were distributed at the periphery and the central region of the granuloma in all experimental periods, however no staining was observed in cell contacting to material. Besides macrophages, the lysosomal glycoprotein epitope recognized by CD68 antibodies can be expressed by mast cell granules and sometimes by fibroblasts. Taken together, our results suggest that xenogenic HA promotes extracellular matrix remodeling through induction of MMP-9 activity and presence of CD68(+) cells.
Resumo:
Reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is a single membrane-anchored MMP-regulator and regulates matrix metalloproteinases (MMP) 2, 9 and 14. In turn, MMPs are endopeptidases that play a pivotal role in remodeling ECM. In this work, we decided to evaluate expression pattern of RECK in growing rat incisor during, specifically focusing out amelogenesis process. Based on different kinds of ameloblasts, our results showed that RECK expression was conducted by secretory and post-secretory ameloblasts. At the secretory phase, RECK was localized in the infra-nuclear region of the ameloblast, outer epithelium, near blood vessels, and in the stellate reticulum. From the transition to the maturation phases, RECK was strongly expressed by non-epithelial immuno-competent cells (macrophages and/or dendritic-like cells) in the papillary layer. From the transition to the maturation stage, RECK expression was increased. RECK mRNA was amplified by RT-PCR from whole enamel organ. Here, we verified the presence of RECK mRNA during all stages of amelogenesis. These events were governed by ameloblasts and by non-epithelial cells residents in the enamel organ. Concluding, we found differential expression of MMPs-2, -9 and RECK in the different phases of amelogenesis, suggesting that the tissue remodeling is rigorously controlled during dental mineralization.
Resumo:
Structural vascular changes in two-kidney, one-clip (2K-1C) hypertension may result from increased matrix metalloproteinase (MMP)-2 activity. MMP-2 activation is regulated by other MMPs, including transmembrane-MMPs, and by tissue inhibitors of MMPs (TIMPs). We have investigated the localization of MMP-2, -9, -14, and TIMPs 1-4 in hypertensive aortas and measured their levels by zymography/Western blotting and immunohistochemistry. Gelatinolytic activity was assayed in tissues by in situ zymography. Sham-operated and 2K-1C hypertensive rats were treated with doxycycline (or vehicle) for 8 weeks, and the systolic blood pressure was monitored weekly. Doxycycline attenuated 2K-1C hypertension (165 +/- 11.7 mmHg versus 213 +/- 7.9 mm Hg in hypertensive controls, P<0.01), and completely prevented increase in the thicknesses of the media and the intima in 2K-1C animals (P<0.01). Increased amounts of MMP-2, -9, and -14 were found in hypertensive aortas, as well as enhanced gelatinolytic activity. A gradient in the localization of MMP-2, -9, and -14 was found, with increased amounts detected in the intima, at sites with higher gelatinolytic activity. Doxycycline attenuated hypertension induced increases in all the 3 investigated MMPs in both the media and the intima (all P<0.05). but it did not change the amounts of TIMPs 1-4 (P>0.05). Therefore, an imbalance between increased amounts of MMPs at the tissue level without a corresponding increase in the quantities of TIMPs, particularly in the intima and inner media layers, appears to account for the increased proteolytic activity found in 2K-1C hypertension-induced maladaptive vascular remodeling. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nicotine plays a role in smoking-associated cardiovascular diseases, and may upregulate matrix metalloproteinase (MMP)-2 and MMP-9. We examined whether nicotine induces the release of MMP-2 and MMP-9 by rat smooth muscle cells (SMC), and whether doxycycline (non-selective MMP inhibitor) inhibits the vascular effects produced by nicotine. SMC were incubated with nicotine 0, 50, and 150 nM for 48 h. MMP-2 and MMP-9 levels in the cell supernatants were determined by gelatin zymography. The acute changes in mean arterial pressure caused by nicotine 2 mu mol/kg (or saline) were assessed in rats pretreated with doxycycline (or saline). We also examined whether doxcycline (30 mg/Kg, i.p., daily) modifies the effects of nicotine (10 mg/kg/day; 4 weeks) on the endothelium-dependent relaxations of rat aortic rings. Aortic MMP-2 levels were assessed by gelatin zymography. Aortic gelatinolytic activity was assessed using a gelatinolytic activity kit. MMP-2 and MMP-9 levels increased in the supernatant of SMC cells incubated with nicotine 150 nM (P<0.05) but not with 50 nM. Nicotine (2 mu mol/kg) produced lower increases in the mean arterial pressure in rats pretreated with doxycycline than those found in rats pretreated with saline (26 +/- 4 vs. 37 +/- 4 mmHg, respectively; P<0.05). Nicotine impaired of the endothelium-dependent responses to acetylcholine, and treatment with doxycycline increased the potency (pD2) by approximately 25% (P<0.05). While we found no significant differences in aortic MMP-2 levels, nicotine significantly increased gelatinolytic activity (P<0.05). These findings suggest that nicotine produces cardiovascular effects involving MMPs. It is possible that MMPs inhibition may counteract the effects produced by nicotine. (C) 2009 Elsevier B.V. All rights reserved.