948 resultados para Cardiac Output, Low
Resumo:
Sixteen patients with refractory hypertension were submitted to vigorous sodium depletion while cardiovascular homeostasis was monitored with measurements of hormonal and hemodynamic parameters and repeat saralasin tests. This regimen resulted in a negative sodium balance by an average of 300 mEq. The loss of sodium closely correlated to the decrease of body weight (r = 0.70, p less than 0.005). Blood pressure (BP) decreased from 176/166 +/- 8/3 to 155/109 +/-6/3 mm Hg. There was a significant correlation between percent increments in plasma renin activity (PRA) and the rise in plasma norepinephrine (r = 0.68, p less than 0.05) and a close negative correlation between percent increase in PRA and the ratio of fall in mean blood pressure (MAP) per unit of weight loss (r = -0.73, p less than 0.005). Thus, patients with the least percent increase in PRA demonstrated the greatest fall in BP per unit of weight loss, indicating that relative rather than absolute elevation of renin may be the factor limiting antihypertensive efficacy of sodium depletion. Sodium depletion induced increase in peripheral resistance and decrease in cardiac output, both mostly attributable to relative hyperreninemia. Indeed, the adverse hemodynamic changes were reversed by angiotensin inhibition, during which BP normalized. It is concluded that vigorous sodium depletion complemented by angiotensin blockade or suppression with sympatholytic agents improves management of otherwise refractory hypertension.
Resumo:
Compartmental and physiologically based toxicokinetic modeling coupled with Monte Carlo simulation were used to quantify the impact of biological variability (physiological, biochemical, and anatomic parameters) on the values of a series of bio-indicators of metal and organic industrial chemical exposures. A variability extent index and the main parameters affecting biological indicators were identified. Results show a large diversity in interindividual variability for the different categories of biological indicators examined. Measurement of the unchanged substance in blood, alveolar air, or urine is much less variable than the measurement of metabolites, both in blood and urine. In most cases, the alveolar flow and cardiac output were identified as the prime parameters determining biological variability, thus suggesting the importance of workload intensity on absorbed dose for inhaled chemicals.
Resumo:
The effects of the sympathetic activation elicited by a mental stress on insulin sensitivity and energy expenditure (VO(2)) were studied in 11 lean and 8 obese women during a hyperinsulinemic-euglycemic clamp. Six lean women were restudied under nonselective beta-adrenergic blockade with propranolol to determine the role of beta-adrenoceptors in the metabolic response to mental stress. In lean women, mental stress increased VO(2) by 20%, whole body glucose utilization ([6,6-(2)H(2)]glucose) by 34%, and cardiac index (thoracic bioimpedance) by 25%, whereas systemic vascular resistance decreased by 24%. In obese women, mental stress increased energy expenditure as in lean subjects, but it neither stimulated glucose uptake nor decreased systemic vascular resistance. In the six lean women who were restudied under propranolol, the rise in VO(2), glucose uptake, and cardiac output and the decrease in systemic vascular resistance during mental stress were all abolished. It is concluded that 1) in lean subjects, mental stress stimulates glucose uptake and energy expenditure and produces vasodilation; activation of beta-adrenoceptors is involved in these responses; and 2) in obese patients, the effects of mental stress on glucose uptake and systemic vascular resistance, but not on energy expenditure, are blunted.
Resumo:
The objective of the study was to evaluate the tissue oxygenation and hemodynamic effects of NOS inhibition in clinical severe septic shock. Eight patients with septic shock refractory to volume loading and high level of adrenergic support were prospectively enrolled in the study. Increasing doses of NOS inhibitors [N(G)-nitro-L-arginine-methyl ester (L-NAME) or N(G)-monomethyl-L-arginine (L-NMMA)] were administered as i.v. bolus until a peak effect = 10 mmHg on mean blood pressure was obtained or until side effects occurred. If deemed clinically appropriate, a continuous infusion of L-NAME was instituted and adrenergic support weaning attempted. The bolus administration of NOS inhibitors transiently increased mean blood pressure by 10 mm Hg in all patients. Seven out of eight patients received an L-NAME infusion, associated over 24 h with a progressive decline in cardiac index (P < 0.001) and an increase in systemic vascular resistance (P < 0.01). Partial or total adrenergic support weaning was rapidly possible in 6/8 patients. Oxygen transport decreased (P < 0.001), but oxygen consumption remained unchanged in those patients in whom it could be measured by indirect calorimetry (5/8). Blood lactate and the difference between tonometric gastric and arterial PCO2 remained unchanged. There were 4/8 ICU survivors. We conclude that nitric oxide synthase inhibition in severe septic shock was followed with a progressive correction of the vasoplegic hemodynamic disturbances with finally normalization of cardiac output and systemic vascular resistances without any demonstrable deterioration in tissue oxygenation.
Resumo:
This study aimed to compare O2 consumption (VO2) determination by the gas-exchange (VO2GE) and Fick (VO2F) methods in cardiac surgical patients. A total of 10 mechanically ventilated postoperative patients were studied prospectively. Thermodilution was performed using three randomly applied techniques: room temperature saline injected at end expiration, room temperature saline randomly injected in the respiratory cycle, and iced saline injected at end expiration. The influence of the number of thermodilution determinations was assessed by comparing results from 2 and 10 injections. The variability of VO2F was greater than that of VO2GE. There was no bias between VO2GE and VO2F values using injectate at room temperature. Accuracy and precision were not improved by increasing the number of cardiac output determinations from 2 to 10. A significant bias was observed using ice-cold injectate, VO2F being 18.0 +/- 15.4 ml/min/m2 lower than VO2GE (p = 0.001). Published results when comparing VO2F and VO2GE are discrepant. However, a significant bias was found in all studies using cold injectate, with lower VO2F values. We conclude that iced injectate should not be used to assess VO2 in critically ill patients.
Resumo:
Patients with chronic heart failure who are not eligible for heart transplant and whose life expectancy depends mainly on the heart disease may benefit from mechanical circulatory support. Mechanical circulatory support restores adequate cardiac output and organ perfusion and eventually improves patients' clinical condition, quality of life and life expectancy. This treatment is called destination therapy (DT) and we estimate that in Switzerland more than 120 patients per year could benefit from it. In the last 10 years, design of the devices, implantation techniques and prognoses have changed dramatically. The key to successful therapy with a left ventricular assist device is appropriate patient selection, although we are still working on the definition of reliable inclusion and exclusion criteria and optimal timing for surgical implantation. Devices providing best long-term results are continuous flow, rotary or axial blood pumps implanted using minimally invasive techniques on a beating heart. These new devices (Thoratec HeartMate II and HeartWare HVAD) have only a single moving part, and have improved durability with virtually 10 years freedom from mechanical failure. In selected patients, the overall actuarial survival of DT patients is 75% at 1 year and 62% at 2 years, with a clear improvement in quality of life compared with medical management only. Complications include bleeding and infections; their overall incidence is significantly lower than with previous devices and their management is well defined. DT is evolving into an effective and reasonably cost-effective treatment option for a growing population of patients not eligible for heart transplant, showing encouraging survival rates at 2 years and providing clear improvement in quality of life. The future is bright for people suffering from chronic heart failure.
Resumo:
Intestinal complications after laparoscopic cholecystectomy are rare and usually caused by direct injury sustained on trocar insertion. However, intestinal ischaemia has been reported as an unusual complication of the pneumoperitoneum. We describe a 55-years-old patient who underwent an uneventful laparoscopic cholecystectomy after an episode of acute cholecystitis. Initial recovery was complicated by development of increasing abdominal pain which led to open laparotomy on day 2. Gangrene of the distal ileum and right-sided colon was detected and small bowel resection with right colectomy and primary anastomosis was performed. Histological examination of the resected ileum showed features of venous hemorragic infarction and trombosis. In view of the proximity of the operation it is assumed that ileal ischaemia was precipitated by carbon dioxide pneumoperitoneum. Some studies have been demonstrated that, within 30 minutes of establishing a pneumoperitoneum at an intraabdominal pressure of 16 mmHg, cardiac output, blood flow in the superior mesenteric artery and portal vein decrease progressively. Carbon dioxide pneumoperitoneum may lead to mechanical compression of the splanchnic veins and mesenteric vasoconstriction as a result of carbon dioxide absortion. The distribution of the ischaemic segment of intestine is also unusual as the most precarious blood supply is traditionally at the splenic flexure of the colon. It has been suggested that intermittent decompression of the abdomen reduces the risk of mesenteric ischaemia during penumoperitoneum especially in patients with predisposing clinical features for arteriosclerosis intestinal. In present patient was observed intestinal venous infarction what remains unclear but we think the carbon dioxide pneumoperitoneum have been related to it.
Resumo:
Total intravenous anaesthesia (TIVA) with propofol and ketamine proved to be very satisfactory from a clinical point of view. This blind randomised controlled trial was designed to compare induction and maintenance of anaesthesia under continuous infusion of propofol-racemic ketamine (PRK) with that of propofol-S-ketamine (PSK) and evaluate their haemodynamic, metabolic and ventilatory effects. Seven female dogs undergoing ovariohysterectomy were involved in each group. Anaesthesia was induced: in Group PRK, with propofol (4.0mg kg-1) and racemic ketamine (2.0mg kg-1) intravenous (i.v.), followed by i.v. infusion of propofol (initial dose of 0.5mg kg-1 min-1) and racemic ketamine (0.2mg kg-1 min-1); in Group PSK, with propofol (4.0mg kg-1) and S-ketamine (1.0 mg kg¹) i.v., followed by i.v. infusion of propofol (initial dose of 0.5mg kg-1 min-1) and S-ketamine (0.1mg kg-1 min-1). Parameters were assessed before anaesthesia and in 6 time points after induction. In both groups, heart rate increased significantly at all time points. There was a slight decrease in systemic blood pressure, cardiac output and cardiac index in both groups. The systolic index decrease significantly and intense respiratory depression was observed in all groups, making assisted ventilation necessary.
Resumo:
The purpose of this study was to evaluate the possibility of producing circulatory arrest by occlusion of the pulmonary trunk as an alternative to the venous inflow occlusion through the left hemithorax. Eight healthy mongrel dogs were divided in two groups. Group I underwent 4 minutes of outflow occlusion and Group II was submitted to 8 minutes of circulatory arrest. Outflow occlusion was performed through left thoracotomy and pericardiotomy by passing a Rumel tourniquet around the pulmonary trunk. Physical examination, electrocardiography, echocardiography, blood gas analyses, hemodynamic, and oxygen transport variables were obtained before and after the procedure. The dogs from Group I did not have any clinical, electrocardiographic, echocardiographic, or hemo-dynamic abnormalities after anesthetic recover. In the Group II, only one dog survived, which had no clinical, electrocardiographic, or echocardiographic abnormalities. In this last dog, just after releasing the occlusion, it was detected increases in the following parameters: heart rate (HR), systolic, diastolic and mean arterial blood pressure (SAP; DAP; MAP), pulmonary artery pressure (PAP), pulmonary wedge pressure (PWP), central venous pressure (CVP), cardiac output (CO), systolic index (SI), cardiac index (CI), left and right ventricular stroke work (LVSW; RVSW), oxygen delivery index (DO2), oxygen consumption index (VO2), and oxygen extraction (O2 ext). Moreover, the oxygen content of arterial and mixed venous blood (CaO2; CvO2), and the arterial and mixed venous partial pressure of oxygen (PaO2; PvO2) were decreased 5 minutes after circulatory arrest. Outflow occlusion is a feasible surgical procedure for period of 4 minutes of circulatory arrest.
Resumo:
Systemic blood flow (Q) was measured by echodopplercardiography in 5 normal young adult males during apnea, eupnea and tachypnea. Measurements were made in a recumbent posture at 3-min intervals. Tachypnea was attained by doubling the respiratory frequency at eupnea at a constant tidal volume. An open glottis was maintained during apnea at the resting respiratory level. The Q values were positively correlated with the respiratory frequency, decreasing from eupnea to apnea and increasing from eupnea to tachypnea (P<0.05). These data demonstrate that echodopplercardiography, a better qualified tool for this purpose, confirms the positive and progressive effects of ventilation on systemic blood flow, as suggested by previous studies based on diverse technical approaches
Resumo:
The present article contains a brief review on the role of vasopressinergic projections to the nucleus tractus solitarii in the genesis of reflex bradycardia and in the modulation of heart rate control during exercise. The effects of vasopressin on exercise tachycardia are discussed on the basis of both the endogenous peptide content changes and the heart rate response changes observed during running in sedentary and trained rats. Dynamic exercise caused a specific vasopressin content increase in dorsal and ventral brainstem areas. In accordance, rats pretreated with the peptide or the V1 blocker into the nucleus tractus solitarii showed a significant potentiation or a marked blunting of the exercise tachycardia, respectively, without any change in the pressure response to exercise. It is proposed that the long-descending vasopressinergic pathway to the nucleus tractus solitarii serves as one link between the two main neural controllers of circulation, i.e., the central command and feedback control mechanisms driven by the peripheral receptors. Therefore, vasopressinergic input could contribute to the adjustment of heart rate response (and cardiac output) to the circulatory demand during exercise.
Resumo:
Carbon monoxide (CO) is a pollutant commonly recognized for its toxicological attributes, including CNS and cardiovascular effects. But CO is also formed endogenously in mammalian tissues. Endogenously formed CO normally arises from heme degradation in a reaction catalyzed by heme oxygenase. While inhibitors of endogenous CO production can raise arterial pressure, heme loading can enhance CO production and lead to vasodepression. Both central and peripheral tissues possess heme oxygenases and generate CO from heme, but the inability of heme substrate to cross the blood brain barrier suggests the CNS heme-heme oxygenase-CO system may be independent of the periphery. In the CNS, CO apparently acts in the nucleus tractus solitarii (NTS) promoting changes in glutamatergic neurotransmission and lowering blood pressure. At the periphery, the heme-heme oxygenase-CO system can affect cardiovascular functions in a two-fold manner; specifically: 1) heme-derived CO generated within vascular smooth muscle (VSM) can promote vasodilation, but 2) its actions on the endothelium apparently can promote vasoconstriction. Thus, it seems reasonable that the CNS-, VSM- and endothelial-dependent actions of the heme-heme oxygenase-CO system may all affect cardiac output and vascular resistance, and subsequently blood pressure.
Resumo:
The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 µM HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 µg) was reduced after Hg2+ treatment. Cholinesterase activity (µM h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure.
Resumo:
To investigate the role of nitric oxide in human sepsis, ten patients with severe septic shock requiring vasoactive drug therapy and mechanical ventilation were enrolled in a prospective, open, non-randomized clinical trial to study the acute effects of methylene blue, an inhibitor of guanylate cyclase. Hemodynamic and metabolic variables were measured before and 20, 40, 60, and 120 min after the start of a 1-h intravenous infusion of 4 mg/kg of methylene blue. Methylene blue administration caused a progressive increase in mean arterial pressure (60 [55-70] to 70 [65-100] mmHg, median [25-75th percentiles]; P<0.05), systemic vascular resistance index (649 [479-1084] to 1066 [585-1356] dyne s-1 cm-5 m-2; P<0.05) and the left ventricular stroke work index (35 [27-47] to 38 [32-56] g m-1 m-2; P<0.05) from baseline to 60 min. The pulmonary vascular resistance index increased from 150 [83-207] to 186 [121-367] dyne s-1 cm-5 m-2 after 20 min (P<0.05). Mixed venous saturation decreased from 65 [56-76] to 63 [55-69]% (P<0.05) after 60 min. The PaO2/FiO2 ratio decreased from 168 [131-215] to 132 [109-156] mmHg (P<0.05) after 40 min. Arterial lactate concentration decreased from 5.1 ± 2.9 to 4.5 ± 2.1 mmol/l, mean ± SD (P<0.05) after 60 min. Heart rate, cardiac filling pressures, cardiac output, oxygen delivery and consumption did not change. Methylene blue administration was safe and no adverse effect was observed. In severe human septic shock, a short infusion of methylene blue increases systemic vascular resistance and may improve myocardial function. Although there was a reduction in blood lactate concentration, this was not explained by an improvement in tissue oxygenation, since overall oxygen availability did not change. However, there was a significant increase in pulmonary vascular tone and a deterioration in gas exchange. Further studies are needed to demonstrate if nitric oxide blockade with methylene blue can be safe for patients with septic shock and, particularly, if it has an effect on pulmonary function.
Resumo:
Angiotensin II and atrial natriuretic peptide (ANP) play important and opposite roles in the control of water and salt intake, with angiotensin II promoting the intake of both and ANP inhibiting the intake of both. Following blood volume expansion, baroreceptor input to the brainstem induces the release of ANP within the hypothalamus that releases oxytocin (OT) that acts on its receptors in the heart to cause the release of ANP. ANP activates guanylyl cyclase that converts guanosine triphosphate into cyclic guanosine monophosphate (cGMP). cGMP activates protein kinase G that reduces heart rate and force of contraction, decreasing cardiac output. ANP acts similarly to induce vasodilation. The intrinsic OT system in the heart and vascular system augments the effects of circulating OT to cause a rapid reduction in effective circulating blood volume. Furthermore, natriuresis is rapidly induced by the action of ANP on its tubular guanylyl cyclase receptors, resulting in the production of cGMP that closes Na+ channels. The OT released by volume expansion also acts on its tubular receptors to activate nitric oxide synthase. The nitric oxide released activates guanylyl cyclase leading to the production of cGMP that also closes Na+ channels, thereby augmenting the natriuretic effect of ANP. The natriuresis induced by cGMP finally causes blood volume to return to normal. At the same time, the ANP released acts centrally to decrease water and salt intake.