858 resultados para Carbon Emissions, Electric Vehicles, Energy, Forecasting, Internal Combustion Engines, Modelling, Passenger Car Vehicles
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Energy Department, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
"Issued May 1981."
Resumo:
Title from cover.
Resumo:
"September 1963."
Resumo:
Wireless power transmission technology is gaining more and more attentions in city transportation applications due to its commensurate power level and efficiency with conductive power transfer means. In this paper, an inductively coupled wireless charging system for 48V light electric vehicle is proposed. The power stages of the system is evaluated and designed, including the high frequency inverter, the resonant network, full bridge rectifier, and the load matching converter. Small signal modeling and linear control technology is applied to the load matching converter for input voltage control, which effectively controls the wireless power flow. The prototype is built with a dsPIC digital signal controller; the experiments are carried out, and the results reveal nature performances of a series-series resonant inductive power charger in terms of frequency, air-gap length, power flow control, and efficiency issues.
Resumo:
This research develops a methodology and model formulation which suggests locations for rapid chargers to help assist infrastructure development and enable greater battery electric vehicle (BEV) usage. The model considers the likely travel patterns of BEVs and their subsequent charging demands across a large road network, where no prior candidate site information is required. Using a GIS-based methodology, polygons are constructed which represent the charging demand zones for particular routes across a real-world road network. The use of polygons allows the maximum number of charging combinations to be considered whilst limiting the input intensity needed for the model. Further polygons are added to represent deviation possibilities, meaning that placement of charge points away from the shortest path is possible, given a penalty function. A validation of the model is carried out by assessing the expected demand at current rapid charging locations and comparing to recorded empirical usage data. Results suggest that the developed model provides a good approximation to real world observations, and that for the provision of charging, location matters. The model is also implemented where no prior candidate site information is required. As such, locations are chosen based on the weighted overlay between several different routes where BEV journeys may be expected. In doing so many locations, or types of locations, could be compared against one another and then analysed in relation to siting practicalities, such as cost, land permission and infrastructure availability. Results show that efficient facility location, given numerous siting possibilities across a large road network can be achieved. Slight improvements to the standard greedy adding technique are made by adding combination weightings which aim to reward important long distance routes that require more than one charge to complete.
Resumo:
Permanent magnet synchronous motors (PMSMs) provide a competitive technology for EV traction drives owing to their high power density and high efficiency. In this paper, three types of interior PMSMs with different PM arrangements are modeled by the finite element method (FEM). For a given amount of permanent magnet materials, the V shape interior PMSM is found better than the U-shape and the conventional rotor topologies for EV traction drives. Then the V shape interior PMSM is further analyzed with the effects of stator slot opening and the permanent magnet pole chamfering on cogging torque and output torque performance. A vector-controlled flux-weakening method is developed and simulated in matlab to expand the motor speed range for EV drive system. The results show good dynamic and steady-state performance with a capability of expanding speed up to 4 times of the rated. A prototype of the V shape interior PMSM is also manufactured and tested to validate the numerical models built by the finite element method.
Resumo:
There is a need for a proper indicator in order to assess the environmental impact of international trade, therefore using the carbon footprint as an indicator can be relevant and useful. The aim of this study is to show from a methodological perspective how the carbon footprint, combined with input- output models can be used for analysing the impacts of international trade on the sustainable use of national resources in a country. The use of the input-output approach has the essential advantage of being able to track the transformation of goods through the economy. The study examines the environmental impact of consumption related to international trade, using the consumer responsibility principle. In this study the use of the carbon footprint and input-output methodology is shown on the example of the Hungarian consumption and the impact of international trade. Moving from a production- based approach in climate policy to a consumption-perspective principle and allocation, would also help to increase the efficiency of emission reduction targets and the evaluation of the ecological impacts of international trade.
Resumo:
In recent years there has been a growing concern about the emission trade balance of countries. It is due to the fact that countries with an open economy are active players in the international trade, though trade is not only a major factor in forging a country’s economic structure anymore, but it does contribute to the movement of embodied emissions beyond the country borders. This issue is especially relevant from the carbon accounting policy’s point of view, as it is known that the production-based principle is in effect now in the Kyoto agreement. The study aims at revealing the interdependence of countries on international trade and its environmental impacts, and how the carbon accounting method plays a crucial role in evaluating a country’s environmental performance and its role in the climate mitigation processes. The input-output models are used in the methodology, as they provide an appropriate framework for this kind of environmental accounting; the analysis shows an international comparison of four European countries (Germany, the United Kingdom, the Netherlands, and Hungary) with extended trading activities and carbon emissions. Moving from the production-based approach in the climate policy, to the consumptionperspective principle and allocation [15], it would also help increasing the efficiency of emission reduction targets and the evaluation of the sustainability dimension and its impacts of international trade. The results of the study have shown that there is an importance of distinction between the two emission allocation approaches, both from global and local level point of view.