965 resultados para Cape Sable
Resumo:
Measurements of the diameter of O. universa carried out on 30 specimens from 39 samples covering a sediment thickness of 78 m and going back in time to approximately 750 000 y resulted in the construction of a curve of the mean diameter and a curve of the maximum diameter. Both curves, as well as those calculated with the running-averages technique, display cyclic fluctuations with durations of the order of 100 000 y and downwards decreasing amplitudes. These curves are compared with a carbonate curve (on bulk sediment) and an isotopic curve (on benthic foraminifers) obtained from the same set of samples. Correlations are fair to good, but a timelag is noticed between the isotopic curve and the faunal (O. universa mean diameter) curve, with the isotopic signal coming first, in the middle part of the Brunhes Epoch. Biostratigraphic calibration to the paleomagnetic record is provided by four datum planes (two based on calcareous nannofossils, two on diatoms) identified in the succession. Changes recorded in test porosity seem to be less meaningful than changes in test size.
Resumo:
High-resolution planktonic and benthic stable isotope records from Ocean Drilling Program Site 1087 off southeast Africa provide the basis for a detailed study of glacial-interglacial (G-IG) cycles during the last 500 k.y. This site is located in the Southern Cape Basin at the boundary of the coastal upwelling of Benguela and close to the gateway between the South Atlantic and the Indian Oceans. It therefore monitors variations of the hydrological fronts associated with the upwelling system and the Atlantic-Indian Ocean interconnections, in relation to global climate change. The coldest period of the last 500 k.y. corresponds to marine isotope Stage (MIS) 12, when surface water temperature was 4°C lower than during the last glacial maximum (LGM) as recorded by the surface-dwelling foraminifer Globigerinoides ruber. The warmest periods occurred during MISs 5 and 11, a situation slightly different to that observed at Site 704, which is close to the Polar Front Zone, where there is no significant difference between the interglacial stages for the past 450 k.y., except the long period of warmth during MIS 11. The planktonic and benthic carbon isotope records do not follow the G-IG cycles but show large oscillations related to major changes in the productivity regime. The largest positive 13C excursion between 260 and 425 ka coincides with the global mid-Brunhes event of carbonate productivity. The oxygen and carbon isotopic gradients between surface and deep waters display long-term changes superimposed on rapid and high-frequency fluctuations that do not follow the regular G-IG pattern; these gradients indicate modifications of the temperature, salinity, and productivity gradients due to changes in the thermocline depth, the position of the hydrological fronts, and the strength of the Benguela Current.
Resumo:
Monthly samples of stratified plankton tows taken from the slope waters off Cape Cod nearly 25 years ago are used to describe the seasonal succession of planktonic foraminifera and their oxygen isotope ratios. The 15°C seasonal cycle of sea surface temperature (SST) accounts for a diverse mixture of tropical to subpolar species. Summer samples include various Globigerinoides and Neogloboquadrina dutertrei, whereas winter and early spring species include Globigerina bulloides and Neogloboquadrina pachyderma (dextral). Globorotalia inflata lives all year but at varying water depths. Compared with the fauna in 1960-1961 (described by R. Cifelli), our samples seem warmer. Because sea surface salinity varies little during the year, d18O is mostly a function of SST. Throughout the year, there are always species present with d18O close to the calculated isotopic equilibrium of carbonate with surface seawater. This raises the possibility that seasonality can be estimated directly from the range of d18O in a sediment sample provided that the d18O-salinity relationship is the same as today.