1000 resultados para Calypso


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface water hydrography along the western Iberian margin, as part of the North Atlantic's eastern boundary upwelling system, consists of a complex, seasonally variable system of equatorward and poleward surface and subsurface currents and seasonal upwelling. Not much information exists to ascertain if the modern current and productivity patterns subsisted under glacial climate conditions, such as during marine isotope stage (MIS) 2, and how North Atlantic meltwater events, especially Heinrich events, affected them. To help answer these questions we are combining stable isotope records of surface to subsurface dwelling planktonic foraminifer species with sea surface temperature and export productivity data for four cores distributed along the western and southwestern Iberian margin (MD95-2040, MD95-2041, MD99-2336, and MD99-2339). The records reveals that with the exception of the Heinrich events and Greenland Stadial (GS) 4 hydrographic conditions along the western Iberian margin were not much different from the present. During the Last Glacial Maximum (LGM), subtropical surface and subsurface waters penetrated poleward to at least 40.6°N (site MD95-2040). Export productivity was, in general, high on the western margin during the LGM and low in the central Gulf of Cadiz, in agreement with the modern situation. During the Heinrich events and GS 4, on the other hand, productivity was high in the Gulf of Cadiz and suppressed in the upwelling regions along the western margin where a strong halocline inhibited upwelling. Heinrich event 1 had the strongest impact on the hydrography and productivity off Iberia and was the only period when subarctic surface waters were recorded in the central Gulf of Cadiz. South of Lisbon (39°N), the impact of the other Heinrich events was diminished, and not all of them led to a significant cooling in the surface waters. Thus, climatic impacts of Heinrich events highly varied with latitude and the prevailing hydrographic conditions in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to monitor the evolution of the British-Irish Ice Sheet (BIIS) and its influence in surface ocean structure during marine isotopic stages (MIS) 2 and 3, we have analyzed the sediments recovered in core MD04-2829CQ (Rosemary Bank, north Rockall Trough, northeast Atlantic) dated between ~41 and ~18 ka B.P. Ice-rafted debris flux and composition, 40Ar/39Ar ages of individual hornblende grains, multispecies planktonic stable isotope records, planktonic foraminifera assemblage data and faunal-based sea surface temperatures (SSTs) demonstrate a close interaction between BIIS dynamics and surface ocean structure and water properties in this region. The core location lies beneath the North Atlantic Current (NAC) and is ideal for monitoring the shifts in the position of its associated oceanic fronts, as recorded by faunal changes. These data reveal a succession of BIIS-sourced iceberg calving events related to low SST, usually synchronous with dramatic changes in the composition of the planktonic foraminifera assemblage and with variations in the stable isotope records of the taxa Neogloboquadrina pachyderma (sinistral coiling) and Globigerina bulloides. The pacing of the calving events, from typically Dansgaard-Oeschger millennial timescales during late MIS 3 to multicentennial cyclicity from ~28 ka B.P., represents the build-up of the BIIS and its growing instability toward Heinrich Event (HE) 2 and the Last Glacial Maximum. Our data confirm the strong coupling between BIIS instabilities and the temperature and salinity of surface waters in the adjacent northeast Atlantic and demonstrate the BIIS's ability to modify the NAC on its flow toward the Nordic Seas. In contrast, subsurface water masses were less affected except during the Greenland stadials that contain HEs, when most intense water column reorganizations occurred simultaneously with the deposition of cream-colored carbonate sourced from the Laurentide Ice Sheet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution multi-proxy study of core MD99-2286 reveals a highly variable hydrographic environment in the Skagerrak from 9300 cal. yr BP to the present. The study includes foraminiferal faunas, stable isotopes and sedimentary parameters, as well as temperature and salinity reconstructions of a ca. 29 m long radiocarbon-dated core record. The multivariate technique fuzzy c-means was applied to the foraminiferal counts, and it was extremely valuable in defining subtle heterogeneities in the foraminiferal fauna data corresponding to hydrographic changes. The major mid-Holocene (Littorina) transgression, led to flooding of large former land areas in the North Sea, the opening of the English Channel and Danish straits and initiation of the modern circulation system. This is reflected by fluctuating C/N values and an explosive bloom of Hyalinea balthica. A slight indication of ameliorated conditions between 8000-5750 cal. yr BP is related to the Holocene Thermal Maximum. A subsequent increase in fresh water/Baltic water influence between 5750-4350 cal. yr BP is reflected by dominance of Bulimina marginata and depleted d18O-values. The Neoglacial cooling (after 4350 cal. yr BP) is seen in the Skagerrak as enhanced turbidity, increasing TOC-values and short-term changes in an overall Cassidulina laevigata dominated fauna suggesting a prevailing influence of Atlantic waters. This is in agreement with increased strength of westerly winds, as recorded for this period. The last 2000 years were also dominated by Atlantic Water conditions with generally abundant nutrient supply. However, during warm periods, particularly the Medieval Warm Period and the modern warming, the area was subject to a restriction in the supply of nutrients and/or the nutrient supply had a more refractory character.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well established that orbital scale sea-level changes generated larger transport of sediments into the deep-sea during the last glacial maximum than the Holocene. However, the response of sedimentary processes to abrupt millennial-scale climate variability is rather unknown. Frequency of distal turbidites and amounts of advected detrital carbonate are estimated off the Lisbon-Setúbal canyons, within a chronostratigraphy based on radiometric ages, oxygen isotopes and paleomagnetic key global anomalies. We found that: 1) Higher frequency of turbidites concurred with Northern Hemisphere coldest temperatures (Greenland Stadials [GS], including Heinrich [H] events). But more than that, an escalating frequency of turbidites starts with the onset of global sea-level rising (and warming in Antarctica) and culminates during H events, at the time when rising is still in its early-mid stage, and the Atlantic Meridional Overturning Circulation (AMOC) is re-starting. This short time span coincides with maximum gradients of ocean surface and bottom temperatures between GS and Antarctic warmings (Antarctic Isotope Maximum; AIM 17, 14, 12, 8, 4, 2) and rapid sea-level rises. 2) Trigger of turbidity currents is not the only sedimentary process responding to millennial variability; land-detrital carbonate (with a very negative bulk d18O signature) enters the deep-sea by density-driven slope lateral advection, accordingly during GS. 3) Possible mechanisms to create slope instability on the Portuguese continental margin are sea-level variations as small as 20 m, and slope friction by rapid deep and intermediate re-accommodation of water masses circulation. 4) Common forcing mechanisms appear to drive slope instability at both millennial and orbital scales.