999 resultados para Calculated (Richards, 1962, U.S. Navy Hydrographic Office Tech Rept 106)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organic facies of Early and middle Cretaceous sediments drilled at DSDP Site 534 is dominated by terrestrially derived plant remains and charcoal. Marine organic matter is mixed with the terrestrial components, but through much of this period was diluted by the terrestrial material. The supply of terrestrial organic matter was high here because of the nearness of the shore and high runoff promoted by a humid temperate coastal climate. Reducing conditions favored preservation of both marine and terrestrial organic matter, the terrestrial materials having reached the site mostly in turbidity currents or in the slow-moving, near-bottom nepheloid layer. An increase in the abundance of terrestrial organic matter occurred when the sea level dropped in the Valanginian and again in the Aptian-Albian, because rivers dumped more terrigenous elastics into the Basin and marine productivity was lower at these times than when sea level was high. A model is proposed to explain the predominance of reducing conditions in the Valanginian-Aptian, of oxidizing conditions in the late Aptian, and of reducing conditions in the Albian-Cenomanian. The model involves influx of oxygen-poor subsurface waters from the Pacific at times of high or rising sea level (Valanginian-Aptian, and Albian- Cenomanian) and restriction of that influx at times of low sea level (late Aptian). In the absence of a supply of oxygenpoor deep water, the bottom waters of the North Atlantic became oxidizing in the late Aptian, probably in response to development of a Mediterranean type of circulation. The influx of nutrients from the Pacific led to an increase in productivity through time, accounting for an increase in the proportion of marine organic matter from the Valanginian into the Aptian and from the Albian to the Cenomanian. Conditions were dominantly oxidizing through the Middle Jurassic into the Berriasian, with temporary exceptions when bottom waters became reducing, as in the Callovian. Mostly terrestrial and some marine organic matter accumulated during the Callovian reducing episode. When Jurassic bottom waters were oxidizing, only terrestrial organic matter was buried in the sediments, in very small amounts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A zonation is presented for the oceanic late Middle Jurassic to Late Jurassic of the Atlantic Ocean. The oldest zone, the Stephenolithion bigotii Zone (subdivided into a Stephanolithion hexum Subzone and a Cyclagelosphaera margerelii Subzone), is middle Callovian to early Oxfordian. The Vagalapilla stradneri Zone is middle Oxfordian to Kimmeridgian. The Conusphaera mexicana Zone, subdivided into a lower Hexapodorhabdus cuvillieri Subzone and a Polycostella beckmannii Subzone, is the latest Kimmeridgian to Tithonian. Direct correlation of this zonation with the boreal zonation established for Britain and northern France (Barnard and Hay, 1974; Medd, 1982; Hamilton, 1982) is difficult because of poor preservation resulting in low diversity for the cored section at Site 534 and a lack of Tithonian marker species in the boreal realm. Correlations based on dinoflagellates and on nannofossils with stratotype sections (or regions) give somewhat different results. Dinoflagellates give generally younger ages, especially for the Oxfordian to Kimmeridgian part of the recovered section, than do nannofossils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nine holes (556-564) drilled during DSDP Leg 82 in a region west and southwest of the Azores Platform (Fig. 1) exhibit a wide variety of chemical compositions that indicate a complex petrogenetic history involving crystal fractionation, magma mixing, complex melting, and mantle heterogeneity. The major element chemistry of each hole except Hole 557 is typical of mid-ocean ridge basalts (MORBs), whereas the trace element and rare earth element (REE) abundances and ratios are more variable, and show that both depleted Type I and enriched Type II basalts have been erupted in the region. Hole 556 (30-34 Ma), located near a flow line through the Azores Triple Junction, contains typically depleted basalts, whereas Hole 557 (18 Ma), located near the same flow line but closer to the Azores Platform, is a highly enriched FeTi basalt, indicating that the Azores hot-spot anomaly has existed in its present configuration for at least 18 Ma, but less than 30-34 Ma. Hole 558 (34-37 Ma), located near a flow line through the FAMOUS and Leg 37 sites, includes both Type I and II basalts. Although the differences in Zr/Nb and light REE/heavy REE ratios imply different mantle sources, the (La/Ce)ch (>1) and Nd isotopic ratios are almost the same, suggesting that the complex melting and pervasive, small-scale mantle heterogeneity may account for the variations in trace element and REE ratios observed in Hole 558 (and FAMOUS sites). Farther south, Hole 559 (34-37 Ma), contains enriched Type II basalts, whereas Hole 561 (14-17 Ma), located further east near the same flow line, contains Type I and II basalts. In this case, the (La/Ce)ch and Nd isotopic ratios are different, indicating two distinct mantle sources. Again, the existence along the same flow line of two holes exhibiting such different chemistry suggests that mantle heterogeneity may exist on a more pervasive and transient smaller scale. (Hole 560 was not sampled for this study because the single basalt clast recovered was used for shipboard analysis.) All of the remaining three holes (562, 563, 564), located along a flow line about 100 km south of the Hayes Fracture Zone (33°N), contain only depleted Type I basalts. The contrast in chemical compositions suggests that the Hayes Fracture Zone may act as a "domain" boundary between an area of fairly homogeneous, depleted Type I basalts to the south (Holes 562-564) and a region of complex, highly variable basalts to the north near the Azores hot-spot anomaly (Holes 556-561).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed analyses of well-preserved carbonate samples from across the Cretaceous/Tertiary boundary in Hole 577 have revealed a significant decline in the d13C values of calcareous nannoplankton from the Maestrichtian to the Danian Age accompanied by a substantial reduction in carbonate accumulation rates. Benthic foraminifers, however, do not exhibit a shift in carbon composition similar to that recorded by the calcareous nannoplankton, but actually increase slightly over the same time interval. These results are similar to the earlier findings at two North Pacific Deep Sea Drilling Project locations, Sites 47.2 and 465, and are considered to represent a dramatic decrease in oceanic phytoplankton production associated with the catastrophic Cretaceous/Tertiary boundary extinctions. In addition, the change in carbon composition of calcareous nannoplankton across the Cretaceous/Tertiary boundary at Hole 577 is accompanied by only minor changes in the oxygen isotope trends of both calcareous nannoplankton and benthic foraminifers, suggesting that temperature variations in the North Pacific from the late Maestrichtian to the early Danian Age were insignificant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two sites on the southern flank of the Costa Rica Rift were drilled on DSDP Legs 68 and 69, one on crust 3.9 m.y. old and the other on crust 5.9 m.y. old. The basement of the younger site is effectively cooled by the circulation of seawater. The basement of the older site has been sealed by sediment, and an interval in the uppermost 560 meters of basement recently reheated to temperatures of 60 to 120°C. Although the thickness of the sediments at the two sites is similar (150-240 m versus 270 m), the much rougher basement topography at the younger Site 505 produces occasional basement outcrops, through which 80 to 90% of the total heat loss apparently occurs by advection of warm seawater. This seawater has been heated only slightly, however; the temperature at the base of the sediments is only 9°C. Changes in its composition due to reaction with the basement basalts are negligible, as indicated by profiles of sediment pore water chemistry. Bacterial sulfate reduction in the sediments produces a decrease in SO4 (and Ca) and an increase in alkalinity (and Sr and NH3) as depth increases to an intermediate level, but at deeper levels these trends reverse, and all of these species plus Mg, K, Na, and chlorinity approach seawater values near basement. Si, however, is higher, and Li may be lower. At the older site, Site 501/504, where heat loss is entirely by conduction, the temperature at the sediment/basement contact is 59°C. Sediment pore water chemistry is heavily affected by reaction with the basaltic basement, as indicated by large decreases in d18O, Mg, alkalinity, Na, and K and an increase in Ca with increasing depth. The size of the changes in d18O, Mg, alkalinity, Ca, Sr, and SO4 varies laterally over 500 meters, indicating lateral gradients in pore water chemistry that are nearly as large as the vertical gradients. The lateral gradients are believed to result from similar lateral gradients in the composition of the basement formation water, which propagate upward through the sediments by diffusion. A model of the d18O profile suggests that the basement at Site 501/504 was sealed off from advection about 1 m.y. ago, so that reaction rates began to dominate the basement pore water chemistry. A limestone-chert diagenetic front began to move upward through the lower sediments less than 200,000 yr. ago.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of DSDP Leg 73 was to obtain high-quality records of major paleooceanographic events in the South Atlantic. This was achieved by coring six sites on the African plate. The sediments thus recovered span the Cenozoic and five of the six sites proved ideally suited for magnetostratigraphic analysis. The results presented in this paper and elsewhere in this volume constitute the first opportunity to extend the direct correlation of the magnetostratigraphic and biostratigraphic time-scales into the Paleogene in deep-sea cores. The magnetostratigraphic analyses from DSDP Leg 73 sediments are presented in this paper. The correlation of the magnetostratigraphy to the magnetic polarity time-scale provides tight age-depth control for the five sites analyzed, allowing the accurate calculation of sediment accumulation rates. The data presented here represent a remarkable record of the fine-scale polarity history of the Earth's magnetic field. These data place constraints on the interpretation of smallscale marine magnetic anomalies which are modelled equally effectively by field intensity fluctuations as polarity reversals. At least some of the "tiny wiggles" correspond to very short polarity units in the magnetostratigraphic record. By assuming an axial geocentric dipole, the inclination of the time-averaged magnetic field recorded in the sediments can be used to calculate the paleolatitude at which the sediments were deposited. Combining the age and average inclination information available from the magnetostratigraphy, we present paleolatitudes versus time for the Leg 73 drill sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basalts in two holes spaced 200 meters apart at DSDP Site 456 in the Mariana Trough both show a downward sequence of nonoxidative and oxidative zones of alteration, each 10 to 15 meters thick, overlying fresh basalts. Basalts in the nonoxidative zone have been extensively chloritized and have vein and vesicle fillings of quartz, opal, chlorite, calcite, and pyrite. Minor sulfides are chalcopyrite and digenite. Basalts in the oxidative zone have abundant smectites and iron hydroxides and are variably enriched in K, Rb, and Ba, unlike the nonoxidative basalts above them. We propose that the oxidative zone was a zone of mixing between high-temperature, reduced hydrothermal fluids moving horizontally beneath impermeable sediments at the top of the pillowed basement lavas and cold, oxygenated seawater in interpillow voids deeper in the basement. Recrystallized vitric tuffs immediately above the basalts containing authigenic quartz and wairakite, as well as occurrence of chlorite, epidote, and chalcopyrite in the basalts, suggest temperatures of alteration in excess of 200°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stockwork-like metal sulfide mineralizations were found at 910-928 m below seafloor (BSF) in the pillow/dike transition zone of Hole 504B. This is the same interval where most physical properties of the 5.9-m.y.-old crust of the Costa Rica Rift change from those characteristic of Layer 2B to those of Layer 2C. The pillow lavas, breccias, and veins of the stockwork-like zone were studied by transmitted and reflected light microscopy, X-ray diffraction, and electron microprobe analysis. Bulk rock oxygen isotopic analyses as well as isolated mineral oxygen and sulfur isotopic analyses and fluid inclusion measurements were carried out. A complex alteration history was reconstructed that includes three generations of fissures, each followed by precipitation of characteristic hydrothermal mineral parageneses: (1) Minor and local deposition of quartz occurred on fissure walls; adjacent wall rocks were silicified, followed by formation of chlorite and minor pyrite I in the veins, whereas albite, sphene, chlorite and chlorite-expandable clay mixtures, actinolite, and pyrite replaced igneous phases in the host rocks. The hydrothermal fluids responsible for this first stage were probably partially reacted seawater, and their temperatures were at least 200-250° C. (2) Fissures filled during the first stage were reopened and new cracks formed. They were filled with quartz, minor chlorite and chlorite-expandable clay mixtures, traces of epidote, common pyrite, sphalerite, chalcopyrite, and minor galena. During the second stage, hydrothermal fluids were relatively evolved metal- and Si-rich solutions whose temperatures ranged from 230 to 340° C. The fluctuating chemical composition and temperature of the solutions produced a complex depositional sequence of sulfides in the veins: chalcopyrite I, ± Fe-rich sphalerite, chalcopyrite II ("disease"), Fe-poor sphalerite, chalcopyrite III, galena, and pyrite II. (3) During the last stage, zeolites and Mg-poor calcite filled up the remaining spaces and newly formed cracks and replaced the host rock plagioclase. Analcite and stilbite were first to form in veins, possibly at temperatures below 200°C; analcite and earlier quartz were replaced by laumontite at 250°C, whereas calcite formation temperature ranged from 135 to 220°C. The last stage hydrothermal fluids were depleted in Mg and enriched in Ca and 18O compared to seawater and contained a mantle carbon component. This complex alteration history paralleling a complex mineral paragenesis can be interpreted as the result of a relatively long-term evolution of a hydrothermal system with superimposed shorter term fluctuations in solution temperature and composition. Hydrothermal activity probably began close to the axis of the Costa Rica Rift with the overall cooling of the system and multiple fracturing stages due to movement of the crust away from the axis and/or cooling of a magmatic heat source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of 40Ar-39Ar step-heating dating was applied to three rock samples from core of DSDP Site 443, one sample from Site 445, and four samples at Site 446. All sites were drilled during DSDP Leg 58. At Site 443 (Shikoku Basin), about 116 meters of basalt basement was drilled. Three samples were chosen for dating from different levels in the basalt; two samples are aphyric basalt, and the other is subophitic dolerite. At Site 445 (Daito Ridge), no basement rock was drilled; however, conglomeratic sandstone was cored in the lower part of the hole. 40Ar-39Ar dating was applied to a basalt pebble in the conglomerate. At Site 446 (Daito Basin), the lower cored sequence is clay stone interlayered with 16 basalt sills. Four samples were chosen from sills at different levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed 580 integrated scrape-samples from HPC Site 480 for organic and carbonate carbon. Once precise dating is available, these will provide a high-resolution framework for understanding late Quaternary Oceanographic and climatic fluctuations in this region. Organic carbon ranges mostly within a narrow band of 1.8 to 3.5% C. Calcium carbonate varies from undetectable to over 20%, with an average of only about 5%. Source of carbonate are mostly benthic and planktonic foraminifers, although some sections are dominated by diagenetic carbonate, shelly hash, or nannofossils. Detrital sources are low in carbonate. We divided the sequence into 17 calcium carbonate (CC) zones to separate pulses, low and median values. The CC-Zones show various second-order patterns of cyclicity, asymmetry, and events. Laminated zones have lowest uniform values, but a perfect correlation between carbonate content and homogeneous or laminated facies was not found. Maximum values tend to be located near the transition of these two sediment types, showing that accumulation of carbonate is favored during times of breakdown of stable Oceanographic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sand-silt-clay distribution was determined on 10-cm**3 sediment samples collected at the time the cores were split and described. The sediment classification used here is that of Shepard (1954), with the sand, silt, and clay boundaries based on the Wentworth (1922) scale. Thus the sand, silt, and clay fractions are composed of particles whose diameters are 2000 to 62.5 µm, 62.5 to 3.91 µm, and less than 3.91 µm, respectively. This classification is applied without regard to sediment type and origin; therefore, the sediment names used in this table may differ from those used elsewhere in this volume; e.g., a silt composed of nannofossils may be called a nannofossil ooze in a site chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Bound" and "free" solvent-extractable lipids have been examined from Sections 440A-7-6, 440B-3-5, 440B-8-4, 440B-68-2, and 436-11-4. The compound classes studied include aliphatic and aromatic hydrocarbons, ketones, alcohols, and carboxylic acids. Carotenoids and humic acids have also been examined. The quantitative results are considered in terms of input indicators, diagenesis parameters, and structural classes. A difference in input is deduced across the Japan Trench, with a higher proportion of autochthonous components on the western inner trench slope compared with the more easterly, outer trench, wall and greater input in the early Pleistocene than in the Miocene. A variety of diagenetic transformations is observed at Site 440 as sample depth increases. Results are compared with those of samples from Atlantic Cretaceous sediments and from the Walvis Bay high productivity area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 560-meter-thick sequence of Cenomanian through Pleistocene sediments cored at DSDP Site 462 in the Nauru Basin overlies a 500-meter-thick complex unit of altered basalt flows, diabase sills, and thin intercalated volcaniclastic sediments. The Upper Cretaceous and Cenozoic sediments contain a high proportion of calcareous fossils, although the site has apparently been below the calcite compensation depth (CCD) from the late Mesozoic to the Pleistocene. This fact and the contemporaneous fluctuations of the calcite and opal accumulation rates suggest an irregular influx of displaced pelagic sediments from the shallow margins of the basin to its center, resulting in unusually high overall sedimentation rates for such a deep (5190 m) site. Shallow-water benthic fossils and planktonic foraminifers both occur as reworked materials, but usually are not found in the same intervals of the sediment section. We interpret this as recording separate erosional interludes in the shallow-water and intermediate-water regimes. Lower and upper Cenozoic hiatuses also are believed to have resulted from mid-water events. High accumulation rates of volcanogenic material during Santonian time suggest a corresponding significant volcanic episode. The coincidence of increased carbonate accumulation rates during the Campanian and displacement of shallow-water fossils during the late Campanian-early Maestrichtian with the volcanic event implies that this early event resulted in formation of the island chains around the Nauru Basin, which then served as platforms for initial carbonate deposition.