996 resultados para Calc
Resumo:
Biostratigraphy and paleoenvironmental history of deep and surficial waters of the Japan Sea are addressed using sequences recovered from the floor of the backarc basin. The study is divided into two parts: (1) foraminifer biostratigraphy and paleoenvironmental assessment of sedimentary sequences recovered from above igneous basement at the four sites and (2) detailed planktonic foraminifer paleoenvironmental analysis of Quaternary and Pliocene sequences from Sites 794 and 797 in the Yamato Basin. A total of 253 samples were examined for the foraminifer biostratigraphy and 325 samples for the detailed paleoenvironmental study of Quaternary and Pliocene sequences. Low abundance and sporadic occurrence of foraminifers limited interpretation of results. Foraminifer-bearing intervals were correlated where possible to diatom and calcareous nannofossil zonations, and the sequences were successfully assigned to the foraminifer zonation of Matsunaga. Unfortunately, extensive barren intervals and sporadic occurrences of planktonic foraminifers prevented zonation of Quaternary and Pliocene intervals, although some interesting conclusions about paleoenvironment were possible and are listed below. A sequence of Neogene (sensu lato) paleoenvironmental events were identified: (1) deepening of the Yamato basins to middle bathyal depths by the early to middle Miocene, an event contemporaneous with the age of some deep basins known from uplifted sections adjacent to the Japan Basin; (2) cooling of the Japan Sea in the early middle Miocene; (3) oxygenation of deep waters in the late Miocene; (4) further cooling of surficial water masses between the Olduvai Subchron and the Brunhes/Matuyama Boundary; and (5) extermination of lower middle bathyal faunas and replacement by upper middle bathyal faunas near the base of the Quaternary.
Resumo:
Major element, trace element, and radiogenic isotope compositions of samples collected from Ocean Drilling Program Leg 126 in the Izu-Bonin forearc basin are presented. Lavas from the center of the basin (Site 793) are high-MgO, low-Ti, two-pyroxene basaltic andesites, and represent the products of synrift volcanism in the forearc region. These synrift lavas share many of the geochemical and petrographic characteristics of boninites. In terms of their element abundances, ratios, and isotope systematics they are intermediate between low-Ti arc tholeiites from the active arc and boninites of the outer-arc high. These features suggest a systematic geochemical gradation between volcanics related to trench distance and a variably depleted source. A basement high drilled on the western flank of the basin (Site 792) comprises a series of plagioclase-rich two-pyroxene andesites with calc-alkaline affinities. These lavas are similar to calc-alkaline volcanics from Japan, but have lower contents of Ti, Zr, and low-field-strength elements (LFSE). Lavas from Site 793 show inter-element variations between Zr, Ti, Sr, Ni, and Cr that are consistent with those predicted during crystallization and melting processes. In comparison, concentrations of P, Y, LFSE, and the rare-earth elements (REE) are anomalous. These elements have been redistributed within the lava pile, concentrating particularly in sections of massive and pillowed flows. Relative movement of these two-element groupings can be related to the alteration of interstitial basaltic andesite glass to a clay mineral assemblage by a post-eruptive process. Fluid-rock interaction has produced similar effects in the basement lavas of Site 792. In this sequence, andesites and dacites have undergone a volume change related to silica mobility. As a result of this process, some lithologies have the major element characteristics of basaltic andesite and rhyolite, but can be related to andesitic or dacitic precursors by silica removal or addition.
Resumo:
This data was collected during a cruise across Drake Passage in the Southern Ocean in February 2009. This data consists of coccolithophore abundance, calcification and primary production rates, carbonate chemistry parameters and ancillary data of macronutrients, chlorophyll-a, average mixed layer irradiance, daily irradiance above the sea surface, euphotic and mixed layer depth, temperature and salinity.
Resumo:
A felsic volcanic series (605-825 mbsf) overlain by upper Eocene shallow-water sediments (500-605 mbsf) and basalticandesitic sills that intruded into sediments of Holocene to Miocene age (0-500 mbsf) was drilled in the forearc region of the Lau Basin at a water depth of 4810 m. The volcanic sequence at Site 841 includes altered and mineralized calc-alkaline rhyolites and dacites, dacitic tuffs, lapilli tuffs, flow breccias, and welded tuffs. These rocks formed subaerially or in a very shallow-water environment suffering a subsidence of >5000 m since Eocene times. Calculations of gains and losses of the major components during alteration show most pronounced changes in the uppermost 70 m of the volcanic sequence. Here, Al, Fe, Mg, and K are enriched, whereas Si and Na are strongly depleted. Illite, vermiculite, chlorite, and hematite predominate in this part of the hole. Throughout the section, quartz, plagioclase, kaolinite, and calcite are present. Sulfide mineralization (up to 10 vol%) consisting mainly of disseminated pyrite (with minor pyrrhotite inclusions) and marcasite together with minor amounts of chalcopyrite is pervasive throughout. Locally, a few sulfide-bearing quartz-carbonate veins as well as Ti-amphibole replacement by rutile and then by pyrite were observed. Strong variations in the As content of sulfides (from 0 to 0.69 wt%) from the same depth interval and local enrichments of Co, Ni, and Cu in pyrite are interpreted to result from fluctuations in fluid composition. Calculations of oxygen and sulfur fugacities indicate that fO2 and fS2 were high at the top and lower at the bottom of the sequence. Sulfur isotope determinations on separated pyrite grains from two samples give d34S values of +6.4ë and +8.4ë, which are close to those reported from Kuroko and Okinawa Trough massive sulfide deposits and calc-alkaline volcanic rocks of the Japanese Ryukyu Island Arc. Calculated chlorite formation temperatures of 265°-290°C at the top of the sequence are consistent with minimum formation temperatures of fluid inclusions in secondary quartz, revealing a narrow range of 270°-297°C. Chlorite formation temperatures are constant downhole and do not exceed 300°C. The presence of marcasite and 4C-type pyrrhotite indicates a formation temperature of <= 250°C. At a later stage, illite was formed at the top of the volcanic series at temperatures well below 200°C.
Resumo:
Tetrapyrrole pigments isolated from sediments retrieved during Leg 57 include pheophytin-a, a myriad of chlorins, free-base deoxophylloerythroetioporphyrin (DPEP), as well as copper and nickel porphyrins. Their richness, both qualitatively and quantitatively, in chlorin tetrapyrroles affords a relatively complete study on the early diagenesis of chlorophyll. Our studies, coupled with those in the preceding chapter by Louda et al., point out the influence of pre- and postdepositional environments upon the mode of chlorophyll diagenesis. Formation of tetrapyrroles, collectively called "petroporphyrins," is seen to occur in only a limited set of environmental conditions (see Baker and Palmer, 1978). The more generalized route of chlorophyll diagenesis, at least in the ocean, results in removal of tetrapyrrole pigment, from the fossil record. Late diagenetic products, metalloporphyrins, are found to represent an extremely minor component of the tetrapyrrole assemblage in sediments studied from the Japan Trench. The products of chlorophyll diagenesis isolated from Japan Trench sediments allow expansion of previous diagenetic schemes (Baker and Palmer, 1978; Triebs, 1936) and indicate directions for future studies.
Resumo:
Metamorphic rocks of the Khavyven Highland in eastern Kamchatka were determined to comprise two complexes of metavolcanic rocks that have different ages and are associated with subordinate amounts of metasediments. The complex composing the lower part of the visible vertical section of the highland is dominated by leucocratic amphibole-mica (+/-garnet) and epidote-mica (+/-garnet) crystalline schists, whose protoliths were andesites and dacites and their high-K varieties of island-arc calc-alkaline series. The other complex composing the upper part of the vertical section consists of spilitized basaltoids transformed into epidote-amphibole and phengite-epidote-amphibole green schists, which form (together with quartzites, serpentinized peridotites, serpentinites, and gabbroids) a sea-margin ophiolitic association. High LILE concentrations, high K/La, Ba/Th, Th/Ta, and La/Nb ratios, deep Ta-Nb minima, and low (La/Yb)_N and high 87Sr/86Sr ratios of the crystalline schists of the lower unit are demonstrated to testify to their subduction nature and suggest that their protolithic volcanics were produced in the suprasubduction environment of the Ozernoi-Valaginskii (Achaivayam-Valaginskii) island volcanic arc of Campanian-Paleogene age. The green schists of the upper unit show features of depleted MOR tholeiitic melts and subduction melts, which cause the deep Ta-Nb minima, and low K/La and 87Sr/86Sr ratios suggesting that the green schists formed in a marginal basin in front of the Ozernoi-Valaginskaya island arc. Recently obtained K-Ar ages in the Khavyven Highland vary from 32.4 to 39.3 Ma and indicate that metamorphism of the protolithic rocks occurred in Eocene under effect of collision and accretion processes of the arc complexes of the Ozernoi-Valaginskii and Kronotskii island arcs with the Asian continent and the closure of forearc oceanic basins in front of them. The modern position of the collision suture that marks the fossil subduction zone of the Ozernoi-Valaginskii arc and is spatially restricted to the buried Khavyven uplift in the Central Kamchatka Depression characterized by well-pronounced linear gravity anomalies.
Resumo:
Variations in the distribution of major elements and stable oxygen isotopes in ODP Leg 113 pore water are not related to lithology and thus appear to be controlled by minor constituents. Petrographic observations and geochemical considerations indicate that alteration of calc-alkalic volcanic material dispersed in the sediment is an important process. A diagenetic reaction is constructed that involves transformation of volcanic glass into smectite, zeolite (represented by phillipsite), chert, and iron sulfide. Mass balance calculations reveal that alteration of less than 10% (volume) of volcanogenic material may account for the observed depletion of magnesium, potassium, and 18O and enrichment of calcium. Alteration of this amount of volcanic glass produces less than 4% (volume) of smectite and zeolite. Hence, mass balance is obtained without having to invoke unreasonable large amounts of volcanic matter or interactions between seawater and basement.
Resumo:
During ODP Leg 107, two holes were drilled in the basement of Vavilov Basin, a central oceanic area of the Tyrrhenian sea. Hole 655B is located near the Gortani ridge in off-axis position at the western rim of the basin; Hole 651A is located on a basement swell at the axis of the basin. This paper deals with mineral chemistry, major and trace element geochemistry, and petrogenesis of the basalts recovered in the two holes. The mineralogy of the basalts is broadly homogeneous, but all of them have suffered important seawater alteration. Their major-element compositions are similar to both normal-mid-ocean-ridge-basalts (N-MORB) and back-arc-basalts (BAB) except for Na2O contents (BAB-like), and K2O which is somewhat enriched in upper unit of Hole 651 A. Their affinity with N-MORB and BAB is confirmed by using immobile trace elements such as Zr, Y, and Nb. However, basalts from the two sites present contrasting geochemical characteristics on spidergrams using incompatible elements. Hole 655B basalts are homogeneous enriched tholeiites, similar to those from DSDP Hole 373 (located on the opposite side of the basin near the eastern rim), and show affinities with enriched MORB (E-MORB). At Hole 651 A, the two basalt units are chemically distinct. One sample recovered in lower unit is rather similar to those from Hole 655B, but basalts from upper unit display calc-alkaline characteristic evidenced by the increase of light-ion-lithophile-element (LILE)/high-field-strength-element (HFSE) ratio, and appearance of a negative Nb-anomaly, making them comparable with orogenic lavas from the adjacent Eolian arc. The observed chemical compositions of the basalts are consistent with a derivation of the magmas from a N-MORB type source progressively contaminated by LILE-enriched fluids released from dehydration of the bordering subducted plate. Implications for evolution of the Tyrrhenian basin are tentatively proposed taking into consideration geochemical and chronological relationships between basalts from Leg 107 Holes 655B and 651 A, together with data from Leg 42 Site 373 and Vavilov Seamount. These data illustrate back-arc spreading in ensialic basin closely associated with the maturation of the adjacent subduction, followed by the growth of late off-axis central volcano, whereas the active subduction retreats southeastward.
Resumo:
Calcareous dinoflagellates often dominate the dinoflagellate cyst assemblage in Cretaceous to Recent oceanic sediments. However, their distribution in Paleogene sediments has scarcely been studied. The investigation of samples from DSDP Site 356 for their calcareous dinoflagellate content revealed 35 mainly long-ranging taxa. The associations and characteristic wall types (pithonelloid, oblique, radial, tangential) fluctuate quantitatively and qualitatively in distinct stratigraphic patterns. Significant shifts, primarily at the K/T boundary and the Paleocene/Eocene boundary, reflect changes in environmental conditions. Certain dinoflagellates forming calcareous cysts, such as Operculodinella operculata, were well adapted to the relatively rapid change of environmental conditions at the K/T boundary, thus blooming to dominate the carbonate flux to the ocean floor. In contrast to the stable Paleocene associations, Eocene calcareous dinoflagellates show fluctuations in relative abundances. These fluctuations can possibly be attributed to redeposition related to increased seaward transport of specimens, due to strengthened western boundary currents. The flora includes two new genera, one new species, and two new forms: Retesphaera diadema Hildebrand-Habel, Willems et Versteegh, gen. et. sp. nov., Cervisiella saxea (Stradner, 1961) Hildebrand-Habel, Willems et Versteegh, gen. et comb. nov., Sphaerodinella? tuberosa forma elongata Hildebrand-Habel, Willems et Versteegh, comb. et forma nov., Sphaerodinella? tuberosa forma variospinosa Hildebrand-Habel, Willems et Versteegh, comb. et forma nov. Three new combinations are proposed: Cervisiella saxea (Stradner, 1961) Hildebrand-Habel, Willems et Versteegh, gen. et comb. nov., Operculodinella operculata (Bramlette et Martini, 1964) Hildebrand-Habel, Willems et Versteegh, comb. nov., and Sphaerodinella? tuberosa (Kamptner, 1963) Hildebrand-Habel, Willems et Versteegh, comb. nov. The genus Operculodinella Kienel, 1994 is emended.
Resumo:
This report includes the petrographic description and reviews the distribution of lithic clasts in sediments drilled during Leg 180 in the Woodlark Basin (southwest Pacific). The lithic clasts include (1) metamorphic rocks; (2) granites; (3) serpentinites, gabbros, dolerites, and basalts likely derived from the Papuan ophiolite belt; (4) rare alkaline volcanites reworked in middle Miocene sediments; (5) medium- to high-K calc-alkaline island arc volcanites, in part as reworked clasts, and explosive products deposited by fallout or reworked by turbiditic currents; and (6) rare sedimentary fragments. At the footwall sites the clast assemblage evidences the association of dolerites and evolved gabbroic rocks; the serpentinite likely pertaining to the same ophiolitic complex are likely derived from onland outcrops and transported by means of turbidity currents. On the whole, extensional tectonics active at least since the middle Pliocene can be inferred. The calc-alkaline volcanism is in continuity with the arc-related products from the Papua Peninsula and D'Entrecasteaux Islands and with the latest volcanics of the Miocene Trobrian arc. However, the medium- to high-K and shoshonitic products do not display a significant temporal evolution within the stratigraphic setting. Lava clasts, volcanogenic grains, and glass shards are associated with turbidity currents, whereas in the Pliocene of northern margin the increasing frequency of tephra (glass shards and vesicular silicic fragments) suggests more explosive activity and increasing contribution to the sediments from aerial fallout materials. Evidence of localized alkalic volcanism of presumable early to middle Miocene age is a new finding. It could represent a rift phase earlier than or coeval to the first opening of the Woodlark Basin or, less probably, could derive from depositional trajectories diverted from an adjacent basin.
Resumo:
Volcaniclastic sediments of North Aoba Basin (Vanuatu) recovered during Ocean Drilling Program (ODP) Leg 134 show a mineralogical and chemical overprint of low grade hydrothermal alteration superimposed on the primary magmatic source compositions. The purpose of this study was to identify authigenic mineral phases incorporated in the volcaniclastic sediments, to distinguish authigenic chemical and mineralogical signals from the original volcaniclastic mineralogical and chemical compositions, and to determine the mechanism of authigenic minerals formation. Mineralogical, micro-chemical and bulk chemical analyses were utilized to identify and characterize authigenic phases and determine the original unaltered ash compositions. 117 volcaniclastic sediment samples from North Aoba Basin Sites 832 and 833 were analyzed. Primary volcaniclastic materials accumulated in North Aoba Basin can be divided into three types. The older basin-filling sequences show three different magmatic trends: high K, calc-alkaline, and low K series. The most recent accumulations are rhyodacitic composition and can be attributed to Santa Maria or Aoba volcanic emissions. Original depositional porosity of volcaniclastic sediments is an important factor in influencing distribution of authigenic phases. Finer-grained units are less altered and retain a bulk mineralogical and chemical composition close to the original pyroclastic rock composition. Coarser grained units (microbreccia and sandstones) are the major hosts of authigenic minerals. At both sites, authigenic minerals (including zeolites, clay minerals, Mg-carbonates, and quartz) exhibit complex zonation with depth that crosses original ash depositional boundaries and stratigraphic limits. The zeolite minerals phillipsite and analcime are ubiquitous throughout the altered intervals. At Site 832, the first zeolite minerals (phillipsite) occur in Pleistocene deposits as shallow as 146 meters below seafloor (mbsf). At Site 833 the first zeolite minerals (analcime) occur in Pleistocene deposits as shallow as 224 mbsf. The assemblage phillipsite + analcime + chabazite appears at 635 mbsf (Site 832) and at 376 mbsf (Site 833). Phillipsite + analcime + chabazite + thomsonite + heulandite are observed between 443 and 732 mbsf at Site 833. Thomsonite is no longer observed below 732 mbsf at Site 833. Heulandite is present to the base of the sections cored. The zeolite assemblages are associated with authigenic clay minerals (nontronite and saponite), calcite, and quartz. Chlorite is noticeable at Site 832 as deep as 851 mbsf. Zeolite zones are present but are less well defined at Site 832. Dolomite and rare magnesite are present below 940 m at Site 832. The coarse-grained authigenic mineral host intervals exhibit geochemical signatures that can be attributed to low grade hydrothermal alteration. The altered intervals show evidence of K2O, CaO, and rare earth elements mobilization. When compared to fine-grained, unaltered units, and to Santa Maria Island volcanics rocks, the altered zones are relatively depleted in rare earth elements, with light rare earth elements-heavy rare earth elements fractionation. Drilling at Site 833 penetrated a sill complex below 840 m. No sill was encountered at Site 832. Complex zonation of zeolite facies, authigenic smectites, carbonates and quartz, and associated geochemical signatures are present at both sites. The mineralogical and chemical alteration overprint is most pronounced in the deeper sections at Site 832. Based on mineralogical and chemical evidence at two locations less than 50 km apart, there is vertical and lateral variation in alteration of the volcaniclastic sediments of North Aoba Basin. The alteration observed may be activated by sill intrusion and associated expulsion of heated fluids into intervals of greater porosity. Such spatial variation in alteration could be attributed to the evolution of the basin axis associated with subduction processes along the New Hebrides Trench.
Resumo:
We have performed quantitative X-ray diffraction (qXRD) analysis of 157 grab or core-top samples from the western Nordic Seas between (WNS) ~57°-75°N and 5° to 45° W. The RockJock Vs6 analysis includes non-clay (20) and clay (10) mineral species in the <2 mm size fraction that sum to 100 weight %. The data matrix was reduced to 9 and 6 variables respectively by excluding minerals with low weight% and by grouping into larger groups, such as the alkali and plagioclase feldspars. Because of its potential dual origins calcite was placed outside of the sum. We initially hypothesized that a combination of regional bedrock outcrops and transport associated with drift-ice, meltwater plumes, and bottom currents would result in 6 clusters defined by "similar" mineral compositions. The hypothesis was tested by use of a fuzzy k-mean clustering algorithm and key minerals were identified by step-wise Discriminant Function Analysis. Key minerals in defining the clusters include quartz, pyroxene, muscovite, and amphibole. With 5 clusters, 87.5% of the observations are correctly classified. The geographic distributions of the five k-mean clusters compares reasonably well with the original hypothesis. The close spatial relationship between bedrock geology and discrete cluster membership stresses the importance of this variable at both the WNS-scale and at a more local scale in NE Greenland.
Resumo:
Acidic to intermediate volcanic rocks were obtained as boulders, pebbles, and clasts with intercalated matrix sediments near the Japan Trench. A 47.5-meter conglomerate bed unconformably overlies acoustic basement consisting of Upper Cretaceous siltstone and is overlain in turn by massive coarse-sandstone and siltstone beds with many fossil mollusks. The volcanic cobbles and boulders in the conglomerate show pronounced porphyritic texture. Their phenocrysts are plagioclase, hornblende, and biotite; the groundmass consists of plagioclase, K-feldspar, quartz, iron oxide, and altered interstitial glass. The Plagioclase content of these volcanic rocks is very high, whereas iron oxide minerals are rare. The chemical composition of these volcanic rocks was analyzed to determine the rock series. Matrix sediments were also analyzed chemically, and their chemical composition was found to be similar to that of volcanic rocks, except for a lower CaO content. SiO2 content of the volcanic rocks ranges from 60.23 to 73.90, corresponding to that of andesite to rhyolite. All the samples show extremely high Al2O3 content, which reflects the high amounts of modal plagioclase. These volcanic rocks belong to both the calc-alkalic and tholeiitic rock series, and the differentiation trend is controlled by fractional crystallization, mainly of plagioclase, K-feldspar, and hornblende. The assemblage of calc-alkalic and tholeiitic rock series is frequently observed in island arcs and active continental margins. These volcanic rocks are derived from the Oyashio ancient landmass, which is a slightly matured island arc.
Resumo:
Drilling at Site 534 in the Blake-Bahama Basin recovered 268 m of Lower Cretaceous, Berriasian to Hauterivian, pelagic carbonates, together with volumetrically minor intercalations of claystone, black shales, and terrigenous and calcareous elastics. Radiolarian nannofossil pelagic carbonates accumulated in water depths of about 3300 to 3650 m, below the ACD (aragonite compensation depth) but close to the CCD (calcite compensation depth). Radiolarian abundance points to a relatively fertile ocean. In the Hauterivian and Barremian, during times of warm, humid climate and rising sea level, turbiditic influxes of both terrigenous and calcareous sediments, and minor debris flows were derived from the adjacent Blake Plateau. The claystones and black shales accumulated on the continental rise, then were redeposited onto the abyssal plain by turbidity currents. Dark organic-rich and pale organic-poor couplets are attributed to climatic variations on land, which controlled the input of terrigenous organic matter. Highly persistent, fine, parallel lamination in the pelagic chalks is explained by repeated algal "blooms." During early diagenesis, organic-poor carbonates remained oxygenated and were cemented early, whereas organic-rich intervals, devoid of burrowing organisms, continued to compact later in diagenesis. Interstitial dissolved-oxygen levels fluctuated repeatedly, but bottom waters were never static nor anoxic. The central western Atlantic in the Lower Cretaceous was thus a relatively fertile and wellmixed ocean basin.