970 resultados para CaM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

After a penetrating lesion in the central nervous system, astrocytes enlarge, divide, and participate in creating an environment that adversely affects neuronal regeneration. We have recently shown that the neural cell adhesion molecule (N-CAM) partially inhibits the division of early postnatal rat astrocytes in vitro. In the present study, we demonstrate that addition of N-CAM, the third immunoglobulin-like domain of N-CAM, or a synthetic decapeptide corresponding to a putative homophilic binding site in N-CAM partially inhibits astrocyte proliferation after a stab lesion in the adult rat brain. Animals were lesioned in the cerebral cortex, hippocampus, or striatum with a Hamilton syringe and needle at defined stereotaxic positions. On one side, the lesions were concomitantly infused with N-CAM or with one of the N-CAM-related molecules. As a control, a peptide of the same composition as the N-CAM decapeptide but of random sequence was infused on the contralateral side of the brain. We consistently found that the population of dividing astrocytes was significantly smaller on the side in which N-CAM or one of the N-CAM-related molecules was infused than on the opposite side. The inhibition was greatest in the cortical lesion sites (approximately 50%) and was less pronounced in the hippocampus (approximately 25%) and striatum (approximately 20%). Two weeks after the lesion, the cerebral cortical sites infused with N-CAM continued to exhibit a significantly smaller population of dividing astrocytes than the sites on the opposite side. When N-CAM and basic fibroblast growth factor, which is known to stimulate astrocyte division in vitro, were coinfused into cortical lesion sites, astrocyte proliferation was still inhibited. These results suggest the hypothesis that, by reducing glial proliferation, N-CAM or its peptides may help create an environment that is more suitable for neuronal regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to present a new geometric model based on the mathematical morphology paradigm, specialized to provide determinism to the classic morphological operations. The determinism is needed to model dynamic processes that require an order of application, as is the case for designing and manufacturing objects in CAD/CAM environments. Design/methodology/approach – The basic trajectory-based operation is the basis of the proposed morphological specialization. This operation allows the definition of morphological operators that obtain sequentially ordered sets of points from the boundary of the target objects, inexistent determinism in the classical morphological paradigm. From this basic operation, the complete set of morphological operators is redefined, incorporating the concept of boundary and determinism: trajectory-based erosion and dilation, and other morphological filtering operations. Findings – This new morphological framework allows the definition of complex three-dimensional objects, providing arithmetical support to generating machining trajectories, one of the most complex problems currently occurring in CAD/CAM. Originality/value – The model proposes the integration of the processes of design and manufacture, so that it avoids the problems of accuracy and integrity that present other classic geometric models that divide these processes in two phases. Furthermore, the morphological operative is based on points sets, so the geometric data structures and the operations are intrinsically simple and efficient. Another important value that no excessive computational resources are needed, because only the points in the boundary are processed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the GoPro camera was first put on the market in 2004, it brought about a new generation of ultracompact cameras designed to be attached to the user’s body, and which came to be known as action cams. Their principal characteristics were their tiny size, their high-quality images and a wide-angle, fixed-focal-length lens. This combination has made it much simpler to get spectacular subjective shots with considerable depth of field. The users of this technology now form a whole generation of citizen-filmmakers who produce thousands of videos every day in a novel realistic style dominated by first-person narrative. Their work is principally shared via video platforms like YouTube and Vimeo, which provide instant feedback in the form of millions of views. In this paper we analize the common features of the action cam recording style and we state these videos will bring about a redefinition of the realist visual style. Furthermore, we propose to relate the success of the action cam phenomenon with the cognitive concept of embodiment and argue that the viewer’s mirror neurons copy the real sensations and enable the viewer to experience, virtually and in safety, the same emotions felt by the person actually taking part in the action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na fase inicial desta Dissertação foi realizada uma revisão abordando as operações por corte de arranque de apara mais comuns, considerando-se que estas seriam o torneamento, a furação mecânica e a fresagem, sendo esta última operação abordada de uma forma mais detalhada, uma vez que esta operação será o tema central de estudo neste trabalho. Realizou-se também um estudo mais elaborado sobre alguns fundamentos de fresagem como a maquinagem concordante e discordante, fatores que influenciam no acabamento final da maquinagem, diâmetro efetivo de corte para uma ferramenta de topo esférico, flexão da ferramenta, entre outros. Temas como o CAD-CAM, CNC e Engenharia Inversa foram também particularizados neste trabalho, pois o conhecimento destes assuntos por parte do leitor seriam importantes para a compreensão do trabalho posteriormente desenvolvido. Na parte seguinte deste trabalho foi realizada uma parte experimental. Um primeiro trabalho foi desenvolvido com base numa geometria a duas dimensões, onde foi necessária a realização das geometrias no software AUTOCAD® e posterior utilização do MASTERCAM® para criar os ciclos de maquinagem e, para um segundo trabalho, desta vez com base numa geometria a três dimensões, utilizou-se o SOLID-WORKS® para extração da Bucha e Cavidade e o MASTERCAM® para criar os ciclos de maquinagem. Ambos os trabalhos foram produzidos no Centro de maquinagem existente no Departamento de Engenharia Mecânica do Instituto Superior de Engenharia de Coimbra.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.