970 resultados para Ca1 Pyramidal Neurons


Relevância:

80.00% 80.00%

Publicador:

Resumo:

One way to achieve amplification of distal synaptic inputs on a dendritic tree is to scale the amplitude and/or duration of the synaptic conductance with its distance from the soma. This is an example of what is often referred to as “dendritic democracy”. Although well studied experimentally, to date this phenomenon has not been thoroughly explored from a mathematical perspective. In this paper we adopt a passive model of a dendritic tree with distributed excitatory synaptic conductances and analyze a number of key measures of democracy. In particular, via moment methods we derive laws for the transport, from synapse to soma, of strength, characteristic time, and dispersion. These laws lead immediately to synaptic scalings that overcome attenuation with distance. We follow this with a Neumann approximation of Green’s representation that readily produces the synaptic scaling that democratizes the peak somatic voltage response. Results are obtained for both idealized geometries and for the more realistic geometry of a rat CA1 pyramidal cell. For each measure of democratization we produce and contrast the synaptic scaling associated with treating the synapse as either a conductance change or a current injection. We find that our respective scalings agree up to a critical distance from the soma and we reveal how this critical distance decreases with decreasing branch radius.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is unclear whether the two hippocampal lobes convey similar or different activities and how they cooperate. Spatial discrimination of electric fields in anesthetized rats allowed us to compare the pathway-specific field potentials corresponding to the gamma-paced CA3 output (CA1 Schaffer potentials) and CA3 somatic inhibition within and between sides. Bilateral excitatory Schaffer gamma waves are generally larger and lead from the right hemisphere with only moderate covariation of amplitude, and drive CA1 pyramidal units more strongly than unilateral waves. CA3 waves lock to the ipsilateral Schaffer potentials, although bilateral coherence was weak. Notably, Schaffer activity may run laterally, as seen after the disruption of the connecting pathways. Thus, asymmetric operations promote the entrainment of CA3-autonomous gamma oscillators bilaterally, synchronizing lateralized gamma strings to converge optimally on CA1 targets. The findings support the view that interhippocampal connections integrate different aspects of information that flow through the left and right lobes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large proportion of human populations suffer memory impairments either caused by normal aging or afflicted by diverse neurological and neurodegenerative diseases. Memory enhancers and other drugs tested so far against memory loss have failed to produce therapeutic efficacy in clinical trials and thus, there is a need to find remedy for this mental disorder. In search for cure of memory loss, our laboratory discovered a robust memory enhancer called RGS14(414). A treatment in brain with its gene produces an enduring effect on memory that lasts for lifetime of rats. Therefore, current thesis work was designed to investigate whether RGS14(414) treatment can prevent memory loss and furthermore, explore through biological processes responsible for RGS-mediated memory enhancement. We found that RGS14(414) gene treatment prevented episodic memory loss in rodent models of normal aging and Alzheimer´s disease. A memory loss was observed in normal rats at 18 months of age; however, when they were treated with RGS14(414) gene at 3 months of age, they abrogated this deficit and their memory remained intact till the age of 22 months. In addition to normal aging rats, effect of memory enhancer treatment in mice model of Alzheimer´s disease (AD-mice) produced a similar effect. AD-mice subjected to treatment with RGS14(414) gene at the age of 2 months, a period when memory was intact, showed not only a prevention in memory loss observed at 4 months of age but also they were able to maintain normal memory after 6 months of the treatment. We posit that long-lasting effect on memory enhancement and prevention of memory loss mediated through RGS14(414) might be due to a permanent structural change caused by a surge in neuronal connections and enhanced neuronal remodeling, key processes for long-term memory formation. A neuronal arborization analysis of both pyramidal and non-pyramidal neurons in brain of RGS14(414)-treated rats exhibited robust rise in neurites outgrowth of both kind of cells, and an increment in number of branching from the apical dendrite of pyramidal neurons, reaching to almost three times of the control animals. To further understand of underlying mechanism by which RGS14(414) induces neuronal arborization, we investigated into neurotrophic factors. We observed that RGS14 treatment induces a selective increase in BDNF. Role of BDNF in neuronal arborization, as well as its implication in learning and memory processes is well described. In addition, our results showing a dynamic expression pattern of BDNF during ORM processing that overlapped with memory consolidation further support the idea of the implication of this neurotrophin in formation of long-term memory in RGS-animals. On the other hand, in studies of expression profiling of RGS-treated animals, we have demonstrated that 14-3-3ζ protein displays a coherent relationship to RGS-mediated ORM enhancement. Recent studies have demonstrated that the interaction of receptor for activated protein kinase 1 (RACK1) with 14-3-3ζ is essential for its nuclear translocation, where RACK1-14-3-3ζ complex binds at promotor IV region of BDNF and promotes an increase in BDNF gene transcription. These observations suggest that 14-3-3ζ might regulate the elevated level of BDNF seen in RGS14(414) gene treated animals. Therefore, it seems that RGS-mediated surge in 14-3-3ζ causes elevated BDNF synthesis needed for neuronal arborization and enhanced ORM. The prevention of memory loss might be mediated through a restoration in BDNF and 14-3-3ζ protein levels, which are significantly decreased in aging and Alzheimer’s disease. Additionally, our results demonstrate that RGS14(414) treatment could be a viable strategy against episodic memory loss.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD), a rare neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene, is characterized by early-onset epilepsy, intellectual disability, and autistic features. To date, little is known about the etiology of CDD and no therapies are available. When overactivated in response to neuronal damage and genetic or environmental factors, microglia – the brain macrophages – cause damage to neighboring neurons by producing neurotoxic factors and pro-inflammatory molecules. Importantly, overactivated microglia have been described in several neurodegenerative and neurodevelopmental disorders, suggesting that active neuroinflammation may account for the compromised neuronal survival and/or brain development observed in these pathologies. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD patients. However, it is unknown whether a similar inflammatory status is present in the brain of CDD patients and, if so, whether it plays a causative or exacerbating role in the pathophysiology of CDD. Here, we show evidence of a chronic microglia overactivation status in the brain of Cdkl5 KO mice, characterized by alterations in microglial cell number/morphology and increased pro-inflammatory gene expression. We found that the neuroinflammatory process is already present in the postnatal period in Cdkl5 KO mice and worsens during aging. Remarkably, by restoring microglia alterations, treatment with luteolin, a natural anti-inflammatory flavonoid, promotes neuronal survival in the brain of Cdkl5 KO mice since it counteracts hippocampal neuron cell death and protects neurons from NMDA-induced excitotoxic damage. In addition, through the restoration of microglia alterations, luteolin treatment also increases hippocampal neurogenesis and restores dendritic spine maturation and dendritic arborization of hippocampal and cortical pyramidal neurons in Cdkl5 KO mice, leading to improved behavioral performance. These findings highlight new insights into the CDD pathophysiology and provide the first evidence that therapeutic approaches aimed at counteracting neuroinflammation could be beneficial in CDD.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Aurintricarboxylic acid (ATA), an inhibitor of endonuclease activity and other protein–nucleic acid interactions, blocks apoptosis in several cell types and prevents delayed death of hippocampal pyramidal CA1 neurons induced by transient global ischemia. Global ischemia in rats and gerbils induces down-regulation of GluR2 mRNA and increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced Ca2+ influx in CA1 before neurodegeneration. This result and neuroprotection by antagonists of AMPA receptors suggests that formation of AMPA receptors lacking GluR2, and therefore Ca2+ permeable, leads to excessive Ca2+ influx in response to endogenous glutamate; the resulting delayed neuronal death in CA1 exhibits many characteristics of apoptosis. In this study, we examined the effects of ATA on expression of mRNAs encoding glutamate receptor subunits in gerbil hippocampus after global ischemia. Administration of ATA by injection into the right cerebral ventricle 1 h before (but not 6 h after) bilateral carotid occlusion prevented the ischemia-induced decrease in GluR2 mRNA expression and the delayed neurodegeneration. These findings suggest that ATA is neuroprotective in ischemia by blocking the transcriptional changes leading to down-regulation of GluR2, rather than by simply blocking endonucleases, which presumably act later after Ca2+ influx initiates apoptosis. Maintaining formation of Ca2+ impermeable, GluR2 containing AMPA receptors could prevent delayed death of CA1 neurons after transient global ischemia, and block of GluR2 down-regulation may provide a further strategy for neuroprotection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have previously shown that exposing rats to a relatively high dose of ethanol during early postnatal life resulted in a deficit in spatial learning ability. This ability is controlled, at least in part, by the hippocampal formation. The purpose of the present study was to determine whether exposure of rats to ethanol during early postnatal life affected the number of specific neurons in the hippocampus. Wistar rats were exposed to a relatively high daily dose of ethanol between postnatal days 10 and 15 by placing them for 3 h each day in a chamber containing ethanol vapor. The blood ethanol concentration was about 430 mg/dl at the end of the exposure period. Groups of ethanol-treated (ET) rats, separation controls (SC), and mother-reared controls (MRC) were anesthetized and killed at 16 days of age by perfusion with phosphate-buffered glutaraldehyde (2.5%). The Cavalieri principle was used to determine the volume of various subdivisions of the hippocampal formation (CA1, CA2+CA3, hilus, and granule cell layer), and the physical disector method was used to estimate the numerical densities of neurons within each subdivision. The total number of neurons was calculated by multiplying estimates of the numerical density with the volume. There were, on average, about 441,000 granule cells in the granule cell layer and 153,000 to 177,000 pyramidal cells in both the CA1 and CA2+CA3 regions in all three treatment groups. In the hilus region, ET rats had about 27,000 neuronal cells. This was significantly fewer than the average of 38,000 such neurons estimated to be present in both MRC and SC animals. Thus, neurons in the hilus region may be particularly vulnerable to the effects of a high dose of ethanol exposure during early postnatal life. (C) 2000 Wiley-Liss, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Presenilin 1 (PS1) mutations are responsible for a majority of early onset familial Alzheimer's disease (FAD) cases, in part by increasing the production of Abeta peptides. However, emerging evidence suggests other possible effects of PS1 on synaptic dysfunction where PS1 might contribute to the pathology independent of Abeta. We chose to study the L286V mutation, an aggressive FAD mutation which has never been analyzed at the electrophysiological and morphological levels. In addition, we analyzed for the first time the long term effects of wild-type human PS1 overexpression. We investigated the consequences of the overexpression of either wild-type human PS1 (hPS1) or the L286V mutated PS1 variant (mutPS1) on synaptic functions by analyzing synaptic plasticity and associated spine density changes from 3 to 15 months of age. We found that mutPS1 induces a transient increase observed only in 4- to 5-month-old mutPS1 animals in NMDA receptor (NMDA-R)-mediated responses and LTP compared with hPS1 mice and nontransgenic littermates. The increase in synaptic functions is concomitant with an increase in spine density. With increasing age, however, we found that the overexpression of human wild-type PS1 progressively decreased NMDA-R-mediated synaptic transmission and LTP, without neurodegeneration. These results identify for the first time a transient increase in synaptic function associated with L286V mutated PS1 variant in an age-dependent manner. In addition, they support the view that the PS1 overexpression promotes synaptic dysfunction in an Abeta-independent manner and underline the crucial role of PS1 during both normal and pathological aging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neural dynamic processes correlated over several time scales are found in vivo, in stimulus-evoked as well as spontaneous activity, and are thought to affect the way sensory stimulation is processed. Despite their potential computational consequences, a systematic description of the presence of multiple time scales in single cortical neurons is lacking. In this study, we injected fast spiking and pyramidal (PYR) neurons in vitro with long-lasting episodes of step-like and noisy, in-vivo-like current. Several processes shaped the time course of the instantaneous spike frequency, which could be reduced to a small number (1-4) of phenomenological mechanisms, either reducing (adapting) or increasing (facilitating) the neuron's firing rate over time. The different adaptation/facilitation processes cover a wide range of time scales, ranging from initial adaptation (<10 ms, PYR neurons only), to fast adaptation (<300 ms), early facilitation (0.5-1 s, PYR only), and slow (or late) adaptation (order of seconds). These processes are characterized by broad distributions of their magnitudes and time constants across cells, showing that multiple time scales are at play in cortical neurons, even in response to stationary stimuli and in the presence of input fluctuations. These processes might be part of a cascade of processes responsible for the power-law behavior of adaptation observed in several preparations, and may have far-reaching computational consequences that have been recently described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent evidence indicates that long-chain polyunsaturated fatty acids (PUFAs) can prevent cardiac arrhythmias by a reduction of cardiomyocyte excitability. This was shown to be due to a modulation of the voltage-dependent inactivation of both sodium (INa) and calcium (ICa) currents. To establish whether PUFAs also regulate neuronal excitability, the effects of PUFAs on INa and ICa were assessed in CA1 neurons freshly isolated from the rat hippocampus. Extracellular application of PUFAs produced a concentration-dependent shift of the voltage dependence of inactivation of both INa and ICa to more hyperpolarized potentials. Consequently, they accelerated the inactivation and retarded the recovery from inactivation. The EC50 for the shift of the INa steady-state inactivation curve was 2.1 +/- 0.4 microM for docosahexaenoic acid (DHA) and 4 +/- 0.4 microM for eicosapentaenoic acid (EPA). The EC50 for the shift on the ICa inactivation curve was 2.1 +/- 0.4 for DHA and > 15 microM for EPA. Additionally, DHA and EPA suppressed both INa and ICa amplitude at concentrations > 10 microM. PUFAs did not affect the voltage dependence of activation. The monounsaturated oleic acid and the saturated palmitic acid were virtually ineffective. The combined effects of the PUFAs on INa and ICa may reduce neuronal excitability and may exert anticonvulsive effects in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cyclic nucleotide-gated (CNG) channels are Ca(2+)-permeable, nonspecific cation channels that can be activated through direct interaction with cAMP and/or cGMP. Recent electrophysiological evidence for these channels in cultured hippocampal neurons prompted us to investigate the expression of CNG channel genes in hippocampus. PCR amplification detected the expression of transcripts for subunit 1 of both the rod photoreceptor (RCNGC1) and the olfactory receptor cell (OCNGC1) subtype of CNG channel in adult rat hippocampus. In situ hybridization detected expression of both channel subtypes in most principal neurons, including pyramidal cells of the CA1 through CA3 regions and granule cells of the dentate gyrus. From the hybridization patterns, we conclude that the two genes are colocalized in individual neurons. Comparison of the patterns of expression of type 1 cGMP-dependent protein kinase and the CNG channels suggests that hippocampal neurons can respond to changes in cGMP levels with both rapid changes in CNG channel activity and slower changes induced by phosphorylation. Future models of hippocampal function should include CNG channels and their effects on both electrical responses and intracellular Ca2+ levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successful reproduction requires that changes in plasma follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), oxytocin (OT), estrogen (E-2) and progesterone (P-4) occur together with the display of maternal behaviors. Ovarian steroids and environmental stimuli can affect the dendritic spines in the rat hippocampus. Here, studying Wistar rats, it is described: (a) the sequential and concomitant changes in the hormonal profile of females at postpartum days (PP) 4, 8, 12, 16, 20 and 24, comparing to estrous cycle referential values; (b) the dendritic spine density in the stratum radiatum of CA1 (CA1-SR) Golgi-impregnated neurons in virgin females across the estrous cycle and in multiparous age-matched ones; and (c) the proportion of different types of spines in the CAI-SR of virgin and postpartum females, both in diestrus. Plasma levels of gonadotrophins and ovarian hormones remained low along PP while LH increased and PRL decreased near the end of the lactating period. The lowest dendritic spine density was found in virgin females in estrus when compared to diestrus and proestrus phases or to postpartum females in diestrus (p < 0.03). Other comparisons among groups were not statistically significant (p > 0.4). There were no differences in the proportions of the different spine types in nulliparous and postpartum females (p > 0.2). Results suggest that medium layer CA1-SR spines undergo rapid modifications in Wistar females across the estrous cycle (not quite comparable to Sprague-Dawley data or to hormonal substitutive therapy following ovariectomy), but persistent effects of motherhood on dendritic spine density and morphology were not found in this area. (c) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basal dendritic arbors of 442 supragranular pyramidal cells in visual cortex of the marmoset monkey were compared by fractal analyses. As detailed in a previous study,(1) individual cells were injected with Lucifer Yellow and processed for a DAB reaction product. The basal dendritic arbors were drawn, in the tangential plane, and the fractal dimension (D) determined by the dilation method. The fractal dimensions were compared between cells in ten cortical areas containing cells involved in visual processing, including the primary visual area (Vi), the second visual area (V2), the dorsoanterior area (DA), the dorsomedial area (DM), the dorsolateral. area (DL), the middle temporal area (MT), the posterior parietal area (PP), the fundus of the superior temporal area (FST) and the caudal and rostral subdivisions of inferotemporal cortex (ITc and ITr, respectively). Of 45 pairwise interareal comparisons of the fractal dimension of neurones, 20 were significantly different. Moreover, comparison of data according to previously published visual processing pathways revealed a trend for cells with greater fractal dimensions in higher cortical areas. Comparison of the present results with those in homologous cortical areas in the macaque monkey(2) revealed some similarities between the two species. The similarity in the trends of D values of cells in both species may reflect developmental features which, result in different functional attributes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basal dendritic arbors of over 500-layer III pyramidal neurones of the macaque cortex were compared by fractal analyses, which provides a measure of the space filling (or branching pattern) of dendritic arbors. Fractal values (D) of individual cells were compared between the cytochrome oxidase (CO)-rich blobs and CO-poor interblobs, of middle and upper layer III, and between sublaminae, in the primary visual area (Vi). These data were compared with those in the CO compartments in the second visual area (V2), and seven other extrastriate cortical areas. (V4, MT, LIP, 7a, TEO, TE and STP). There were significant differences in the fractal dimensions, and therefore the dendritic branching patterns, of cells in striate and extrastriate areas. Of the 55 possible pairwise comparisons of fractal dimension of neurones in different cortical areas (or CO compartments), 39 proved to be significantly different. The markedly different morphologies of pyramidal cells in the different cortical areas may be one of the features that determine the functional signatures of these cells by influencing the number of inputs received by, and propagation of potentials through, their dendritic arbors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have revealed striking differences in pyramidal cell structure among cortical regions involved in the processing of different functional modalities. For example, cells involved in visual processing show systematic variation, increasing in morphological complexity with rostral progression from V1 through extrastriate areas. Differences have also been identified between pyramidal cells in somatosensory, motor and prefrontal cortex, but the extent to which the pyramidal cell phenotype may vary between these functionally related cortical regions remains unknown. In the present study we investigated the structure of layer III pyramidal cells in somatosensory and motor areas 3b, 4, 5, 6 and 7b of the macaque monkey. Cells were intracellularly injected in fixed, flat-mounted cortical slices and analysed for morphometric parameters. The size of the basal dendritic arbours, the number of their branches and their spine density were found to vary systematically between areas. Namely, we found a trend for increasing complexity in dendritic arbour structure through areas 3b, 5 and 7b. A similar trend occurred through areas 4 and 6. The differences in arbour structure may determine the number of inputs received by neurons and may thus be an important factor in determining function at the cellular and systems level.