989 resultados para CONE BEAM
Resumo:
This study was designed to present the feasibility of an in vivo image-guided percutaneous cryoablation of the porcine vertebral body. Methods The institutional animal care committee approved this study. Cone-beam computed tomography (CBCT)-guided vertebral cryoablations (n = 22) were performed in eight pigs with short, 2-min, single or double-freezing protocols. Protective measures to nerves included dioxide carbon (CO2) epidural injections and spinal canal temperature monitoring. Clinical, radiological, and pathological data with light (n = 20) or transmission electron (n = 2) microscopic analyses were evaluated after 6 days of clinical follow-up and euthanasia. Results CBCT/fluoroscopic-guided transpedicular vertebral body cryoprobe positioning and CO2 epidural injection were successful in all procedures. No major complications were observed in seven animals (87.5 %, n = 8). A minor complication was observed in one pig (12.5 %, n = 1). Logistic regression model analysis showed the cryoprobe-spinal canal (Cp-Sc) distance as the most efficient parameter to categorize spinal canal temperatures lower than 19 °C (p<0.004), with a significant Pearson’s correlation test (p < 0.041) between the Cp-Sc distance and the lowest spinal canal temperatures. Ablation zones encompassed pedicles and the posterior wall of the vertebral bodies with an inflammatory rim, although no inflammatory infiltrate was depicted in the surrounding neural structures at light microscopy. Ultrastructural analyses evidenced myelin sheath disruption in some large nerve fibers, although neurological deficits were not observed. Conclusions CBCT-guided vertebral cryoablation of the porcine spine is feasible under a combination of a short freezing protocol and protective measures to the surrounding nerves. Ultrastructural analyses may be helpful assess the early modifications of the nerve fibers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to determine whether image artifacts caused by orthodontic metal accessories interfere with the accuracy of 3D CBCT model superimposition. A human dry skull was subjected three times to a CBCT scan: at first without orthodontic brackets (T1), then with stainless steel brackets bonded without (T2) and with orthodontic arch wires (T3) inserted into the brackets' slots. The registration of image surfaces and the superimposition of 3D models were performed. Within-subject surface distances between T1-T2, T1-T3 and T2-T3 were computed and calculated for comparison among the three data sets. The minimum and maximum Hausdorff Distance units (HDu) computed between the corresponding data points of the T1 and T2 CBCT 3D surface images were 0.000000 and 0.049280 HDu, respectively, and the mean distance was 0.002497 HDu. The minimum and maximum Hausdorff Distances between T1 and T3 were 0.000000 and 0.047440 HDu, respectively, with a mean distance of 0.002585 HDu. In the comparison between T2 and T3, the minimum, maximum and mean Hausdorff Distances were 0.000000, 0.025616 and 0.000347 HDu, respectively. In the current study, the image artifacts caused by metal orthodontic accessories did not compromise the accuracy of the 3D model superimposition. Color-coded maps of overlaid structures complemented the computed Hausdorff Distances and demonstrated a precise fusion between the data sets.
Resumo:
The aim of the present study was to test the reproducibility, sensitivity, and specificity of cone-beam computed tomography (CBCT) in detecting incipient furcation involvement. Fifteen macerated pig mandibles, with intact second molar teeth and preserved adjacent cortical areas, were used. Simulated lesions were created in the furcation region of these teeth by applying 70% perchloric acid in up to four possible buccal/lingual sites in the right/left sides of each mandible. The mandibles were then submitted to a CBCT scan. Two blinded and calibrated experienced oral and maxillofacial radiologists interpreted the exams. Furcation involvement was also assessed in the regions without simulated lesions. CBCT showed high levels of accuracy, ranging from 78% to 88%. The variations in Kappa values for intra- and inter-observer agreement (0.41-0.59) were considered moderate. CBCT can be considered a reliable and accurate method for detecting incipient furcation involvement.
Resumo:
The objective of the current study was to assess the outcome of the alveolar bone grafting (ABG) in patients with cleft palate. Thirty-one patients with complete unilateral cleft lip and palate were prospectively divided into 2 groups according to the timing of surgery: (1) secondary ABG (SABG), undertaken during mixed dentition (n = 16); and (2) tertiary ABG (TABG), undertaken during permanent dentition (n = 15). Septum height was assessed using cone beam computed tomography in 3 views (buccal, intermediate, palatal) and classified according to the modified Bergland Index, which scores the results into 5 types according to the height of the neoformed bone septum (excellent: septum with a normal height; good: septum with minor deficiency; regular: marginal defect of >25% of the root length; bad: bone deficiency on the nasal aspect; and failure). In the SABG group, 6 to 12 months postoperatively, 75% of the patients were classified as having excellent/good conditions and 25% as having regular/bad conditions. No patients were observed as having failure conditions. In the TABG group, 53% of the patients were classified as having excellent/good, 21% were classified as having regular/bad conditions, and 26% were classified as having failure conditions. Significantly better outcomes were observed for the SABG group when compared with the TABG group. In conclusion, the age at which ABG is performed is a factor that impacts on the surgical outcome. Specifically, increasing age is associated with worse outcomes.
Resumo:
Objectives: A wide variety of manifestations is presented in patients with Gaucher's disease (GD), including bone, haematology and visceral disturbances. This study was conducted to ascertain the main maxillofacial abnormalities by means of clinical survey, panoramic and cone beam CT (CBCT); to compare the patient's group with an age-sex matched control group; and to correlate clinical and radiological data. Methods: Ten patients previously diagnosed with GD were submitted to clinical and radiological surveys (CBCT and panoramic radiographs). The examination consisted of anamnesis, extra- and intraoral examinations and analyses of each patient's records. Imaging data were collected from the point of view of 3 observers, and the results compared with a healthy group (20 individuals) by means of statistical analysis (Fisher's exact test). Results: Gaucher patients had significantly more manifestations than otherwise healthy carriers. The most prevalent findings were enlarged marrow spaces, generalized osteopenia and effacement of jaw structures (mandibular canal, lamina dura and mental foramen). Here we describe a case in which thickening of the maxillary sinus mucosa was observed on CBCT rather than opacification of the sinus as seen on panoramic radiographs. Pathological fractures, root resorption and delay on tooth eruption were not observed. Conclusions: A poor relationship could be observed between clinical and radiological data. Patients showed important bone manifestations, which require careful diagnostic and surgical planning whenever necessary. Although panoramic radiographs have shown significant differences, CBCT is more effective in pointing out differences between patients and a control group, thus showing it as an important tool for evaluation of Gaucher patients. Dentomaxillofacial Radiology (2012) 41, 541-547. doi: 10.1259/dmfr/143023353
Resumo:
Sinus floor augmentation has been established as a predictable technique to overcome maxillary bone loss. Antral cystic lesions may lead to intrasurgical complications and should be accurately diagnosed. However, antral pseudocysts have recently been described not to be contraindicated for sinus-grafting procedures. The current article sought to report clinical, cone beam computed tomographic, and histologic results of a maxillary sinus floor augmentation, performed with piezoelectric surgery, in the presence of a large antral pseudocyst. Success of graft maturation was confirmed with histologic analysis, which also indicated the absence of inflammatory infiltration in the tissue evaluated. On the basis of our findings, it is possible to perform a predictable treatment based on sinus floor augmentation in the presence of antral pseudocysts. Graft maturation can also be achieved 6 months after sinus-lifting surgeries.
Resumo:
Objective: This study aimed to assess the presence of additional foramina and canals in the anterior palate region, through cone beam computed tomography (CBCT) images, describing their location, direction, and diameter. Materials & Methods: CBCT exams of 178 subjects displaying the anterior maxilla were included and the following parameters were registered: gender; age group; presence of additional foramina in the anterior palate (AFP) with at least 1 mm in diameter; location and diameter of AFP; and direction of bony canals associated with AFP. Results: Twenty-eight patients (15.7%) presented AFP and in total 34 additional foramina were registered. No statistical differences between patients with or without AFP were found for gender or age. The average diameter of AFP was 1.4 mm (range from 1 to 1.9 mm). Their location was variable, with most of the cases occurring in the alveolar process near the incisors or canines (n = 27). In 18 cases, AFP was associated with bony canals with upward or oblique direction toward the anterior nasal cavity floor. In 14 cases, the canal presented as a direct extension of the canalis sinuosus, in an upward direction laterally to the nasal cavity aperture. In two cases, the canal was observed adjacent to the incisive and joined the nasopalatine canal superiorly. Discussion: CBCT images have a crucial role in the recognition of anatomical variations by allowing detailed tridimensional evaluations. Additional foramina and canals in the anterior region of the upper jaw are relatively frequent. Practitioners should be aware and trained to identify these variations. Conclusions: Over 15% of the population studied had additional foramina in the anterior palate, between 1 mm and 1.9 mm wide, with variable locations. In most cases the canals associated with these foramina either presented as a direct extension of the canalis sinuosus, or coursed towards the nasal cavity floor.
Resumo:
Objectives: The objective of this study is to compare subjective image quality and diagnostic validity of cone-beam CT (CBCT) panoramic reformatting with digital panoramic radiographs. Materials and methods: Four dry human skulls and two formalin-fixed human heads were scanned using nine different CBCTs, one multi-slice CT (MSCT) and one standard digital panoramic device. Panoramic views were generated from CBCTs in four slice thicknesses. Seven observers scored image quality and visibility of 14 anatomical structures. Four observers repeated the observation after 4 weeks. Results: Digital panoramic radiographs showed significantly better visualization of anatomical structures except for the condyle. Statistical analysis of image quality showed that the 3D imaging modalities (CBCTs and MSCT) were 7.3 times more likely to receive poor scores than the 2D modality. Yet, image quality from NewTom VGi® and 3D Accuitomo 170® was almost equivalent to that of digital panoramic radiographs with respective odds ratio estimates of 1.2 and 1.6 at 95% Wald confidence limits. A substantial overall agreement amongst observers was found. Intra-observer agreement was moderate to substantial. Conclusions: While 2D-panoramic images are significantly better for subjective diagnosis, 2/3 of the 3D-reformatted panoramic images are moderate or good for diagnostic purposes. Clinical relevance: Panoramic reformattings from particular CBCTs are comparable to digital panoramic images concerning the overall image quality and visualization of anatomical structures. This clinically implies that a 3D-derived panoramic view can be generated for diagnosis with a recommended 20-mm slice thickness, if CBCT data is a priori available for other purposes.
Resumo:
The main problem connected to cone beam computed tomography (CT) systems for industrial applications employing 450 kV X-ray tubes is the high amount of scattered radiation which is added to the primary radiation (signal). This stray radiation leads to a significant degradation of the image quality. A better understanding of the scattering and methods to reduce its effects are therefore necessary to improve the image quality. Several studies have been carried out in the medical field at lower energies, whereas studies in industrial CT, especially for energies up to 450 kV, are lacking. Moreover, the studies reported in literature do not consider the scattered radiation generated by the CT system structure and the walls of the X-ray room (environmental scatter). In order to investigate the scattering on CT projections a GEANT4-based Monte Carlo (MC) model was developed. The model, which has been validated against experimental data, has enabled the calculation of the scattering including the environmental scatter, the optimization of an anti-scatter grid suitable for the CT system, and the optimization of the hardware components of the CT system. The investigation of multiple scattering in the CT projections showed that its contribution is 2.3 times the one of primary radiation for certain objects. The results of the environmental scatter showed that it is the major component of the scattering for aluminum box objects of front size 70 x 70 mm2 and that it strongly depends on the thickness of the object and therefore on the projection. For that reason, its correction is one of the key factors for achieving high quality images. The anti-scatter grid optimized by means of the developed MC model was found to reduce the scatter-toprimary ratio in the reconstructed images by 20 %. The object and environmental scatter calculated by means of the simulation were used to improve the scatter correction algorithm which could be patented by Empa. The results showed that the cupping effect in the corrected image is strongly reduced. The developed CT simulation is a powerful tool to optimize the design of the CT system and to evaluate the contribution of the scattered radiation to the image. Besides, it has offered a basis for a new scatter correction approach by which it has been possible to achieve images with the same spatial resolution as state-of-the-art well collimated fan-beam CT with a gain in the reconstruction time of a factor 10. This result has a high economic impact in non-destructive testing and evaluation, and reverse engineering.
Resumo:
L'elaborato espone l'iter di un paziente nel reparto di radioterapia e descrive l'evoluzione delle immagini radioterapiche dai portal film alle Cone Beam Computer Tomography. Inoltre espone i vari standard e protocolli usati per archiviare e trasmettere le immagini digitali precedentemente descritte.
Resumo:
The purpose of this study was to evaluate whether measurements on conventional cephalometric radiographs are comparable with 3D measurements on 3D models of human skulls, derived from cone beam CT (CBCT) data. A CBCT scan and a conventional cephalometric radiograph were made of 40 dry skulls. Standard cephalometric software was used to identify landmarks on both the 2D images and the 3D models. The same operator identified 17 landmarks on the cephalometric radiographs and on the 3D models. All images and 3D models were traced five times with a time-interval of 1 week and the mean value of repeated measurements was used for further statistical analysis. Distances and angles were calculated. Intra-observer reliability was good for all measurements. The reproducibility of the measurements on the conventional cephalometric radiographs was higher compared with the reproducibility of measurements on the 3D models. For a few measurements a clinically relevant difference between measurements on conventional cephalometric radiographs and 3D models was found. Measurements on conventional cephalometric radiographs can differ significantly from measurements on 3D models of the same skull. The authors recommend that 3D tracings for longitudinal research are not used in cases were there are only 2D records from the past.