916 resultados para COMPONENT ANALYSIS
Resumo:
The hydroalcoholic extracts prepared from standard leaves of Maytenus ilicifolia and commercial samples of espinheira-santa were evaluated qualitatively (fingerprinting) and quantitatively. In this paper, fingerprinting chromatogram coupled with Principal Component Analysis (PCA) is described for the metabolomic analysis of standard and commercial espinheira-santa samples. The epicatechin standard was used as an external standard for the development and validation of a quantitative method for the analysis in herbal medicines using a photo diode array detector. This method has been applied for quantification of epicatechin in commercialized herbal medicines sold as espinheira-santa in Brazil and in the standard sample of M. ilicifolia.
Resumo:
The aim of this study was to investigate the effect of pre-slaughter handling on the occurrence of PSE (Pale, Soft, and Exudative) meat in swine slaughtered at a commercial slaughterhouse located in the metropolitan region of Dourados, Mato Grosso do Sul, Brazil. Based on the database (n=1,832 carcasses), it was possible to apply the integrated multivariate analysis for the purpose of identifying, among the selected variables, those of greatest relevance to this study. Results of the Principal Component Analysis showed that the first five components explained 89.28% of total variance. In the Factor Analysis, the first factor represented the thermal stress and fatiguing conditions for swine during pre-slaughter handling. In general, this study indicated the importance of the pre-slaughter handling stages, evidencing those of greatest stress and threat to animal welfare and pork quality, which are transport time, resting period, lairage time before unloading, unloading time, and ambience.
Resumo:
ABSTRACT This study aimed to develop a methodology based on multivariate statistical analysis of principal components and cluster analysis, in order to identify the most representative variables in studies of minimum streamflow regionalization, and to optimize the identification of the hydrologically homogeneous regions for the Doce river basin. Ten variables were used, referring to the river basin climatic and morphometric characteristics. These variables were individualized for each of the 61 gauging stations. Three dependent variables that are indicative of minimum streamflow (Q7,10, Q90 and Q95). And seven independent variables that concern to climatic and morphometric characteristics of the basin (total annual rainfall – Pa; total semiannual rainfall of the dry and of the rainy season – Pss and Psc; watershed drainage area – Ad; length of the main river – Lp; total length of the rivers – Lt; and average watershed slope – SL). The results of the principal component analysis pointed out that the variable SL was the least representative for the study, and so it was discarded. The most representative independent variables were Ad and Psc. The best divisions of hydrologically homogeneous regions for the three studied flow characteristics were obtained using the Mahalanobis similarity matrix and the complete linkage clustering method. The cluster analysis enabled the identification of four hydrologically homogeneous regions in the Doce river basin.
Resumo:
Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.
Resumo:
Premenstrual syndrome and premenstrual dysphoric disorder (PMDD) seem to form a severity continuum with no clear-cut boundary. However, since the American Psychiatric Association proposed the research criteria for PMDD in 1994, there has been no agreement about the symptomatic constellation that constitutes this syndrome. The objective of the present study was to establish the core latent structure of PMDD symptoms in a non-clinical sample. Data concerning PMDD symptoms were obtained from 632 regularly menstruating college students (mean age 24.4 years, SD 5.9, range 17 to 49). For the first random half (N = 316), we performed principal component analysis (PCA) and for the remaining half (N = 316), we tested three theory-derived competing models of PMDD by confirmatory factor analysis. PCA allowed us to extract two correlated factors, i.e., dysphoric-somatic and behavioral-impairment factors. The two-dimensional latent model derived from PCA showed the best overall fit among three models tested by confirmatory factor analysis (c²53 = 64.39, P = 0.13; goodness-of-fit indices = 0.96; adjusted goodness-of-fit indices = 0.95; root mean square residual = 0.05; root mean square error of approximation = 0.03; 90%CI = 0.00 to 0.05; Akaike's information criterion = -41.61). The items "out of control" and "physical symptoms" loaded conspicuously on the first factor and "interpersonal impairment" loaded higher on the second factor. The construct validity for PMDD was accounted for by two highly correlated dimensions. These results support the argument for focusing on the core psychopathological dimension of PMDD in future studies.
Resumo:
A modified version of the intruder-resident paradigm was used to investigate if social recognition memory lasts at least 24 h. One hundred and forty-six adult male Wistar rats were used. Independent groups of rats were exposed to an intruder for 0.083, 0.5, 2, 24, or 168 h and tested 24 h after the first encounter with the familiar or a different conspecific. Factor analysis was employed to identify associations between behaviors and treatments. Resident rats exhibited a 24-h social recognition memory, as indicated by a 3- to 5-fold decrease in social behaviors in the second encounter with the same conspecific compared to those observed for a different conspecific, when the duration of the first encounter was 2 h or longer. It was possible to distinguish between two different categories of social behaviors and their expression depended on the duration of the first encounter. Sniffing the anogenital area (49.9% of the social behaviors), sniffing the body (17.9%), sniffing the head (3%), and following the conspecific (3.1%), exhibited mostly by resident rats, characterized social investigation and revealed long-term social recognition memory. However, dominance (23.8%) and mild aggression (2.3%), exhibited by both resident and intruders, characterized social agonistic behaviors and were not affected by memory. Differently, sniffing the environment (76.8% of the non-social behaviors) and rearing (14.3%), both exhibited mostly by adult intruder rats, characterized non-social behaviors. Together, these results show that social recognition memory in rats may last at least 24 h after a 2-h or longer exposure to the conspecific.
Resumo:
The contents of total phenolic compounds (TPC), total flavonoids (TF), and ascorbic acid (AA) of 18 frozen fruit pulps and their scavenging capacities against peroxyl radical (ROO), hydrogen peroxide (H2O2), and hydroxyl radical (OH) were determined. Principal Component Analysis (PCA) showed that TPC (total phenolic compounds) and AA (ascorbic acid) presented positive correlation with the scavenging capacity against ROO, and TF (total flavonoids) showed positive correlation with the scavenging capacity against OH and ROO However, the scavenging capacity against H2O2 presented low correlation with TF (total flavonoids), TPC (total phenolic compounds), and AA (ascorbic acid). The Hierarchical Cluster Analysis (HCA) allowed the classification of the fruit pulps into three groups: one group was formed by the açai pulp with high TF, total flavonoids, content (134.02 mg CE/100 g pulp) and the highest scavenging capacity against ROO, OH and H2O2; the second group was formed by the acerola pulp with high TPC, total phenolic compounds, (658.40 mg GAE/100 g pulp) and AA , ascorbic acid, (506.27 mg/100 g pulp) contents; and the third group was formed by pineapple, cacao, caja, cashew-apple, coconut, cupuaçu, guava, orange, lemon, mango, passion fruit, watermelon, pitanga, tamarind, tangerine, and umbu pulps, which could not be separated considering only the contents of bioactive compounds and the scavenging properties.
Resumo:
In order to determine the variability of pequi tree (Caryocar brasiliense Camb.) populations, volatile compounds from fruits of eighteen trees representing five populations were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. Seventy-seven compounds were identified, including esters, hydrocarbons, terpenoids, ketones, lactones, and alcohols. Several compounds had not been previously reported in the pequi fruit. The amount of total volatile compounds and the individual compound contents varied between plants. The volatile profile enabled the differentiation of all of the eighteen plants, indicating that there is a characteristic profile in terms of their origin. The use of Principal Component Analysis and Cluster Analysis enabled the establishment of markers (dendrolasin, ethyl octanoate, ethyl 2-octenoate and β-cis-ocimene) that discriminated among the pequi trees. According to the Cluster Analysis, the plants were classified into three main clusters, and four other plants showed a tendency to isolation. The results from multivariate analysis did not always group plants from the same population together, indicating that there is greater variability within the populations than between pequi tree populations.
Resumo:
This study developed a gluten-free granola and evaluated it during storage with the application of multivariate and regression analysis of the sensory and instrumental parameters. The physicochemical, sensory, and nutritional characteristics of a product containing quinoa, amaranth and linseed were evaluated. The crude protein and lipid contents ranged from 97.49 and 122.72 g kg-1 of food, respectively. The polyunsaturated/saturated, and n-6:n-3 fatty acid ratios ranged from 2.82 and 2.59:1, respectively. Granola had the best alpha-linolenic acid content, nutritional indices in the lipid fraction, and mineral content. There were good hygienic and sanitary conditions during storage; probably due to the low water activity of the formulation, which contributed to inhibit microbial growth. The sensory attributes ranged from 'like very much' to 'like slightly', and the regression models were highly fitted and correlated during the storage period. A reduction in the sensory attribute levels and in the product physical stabilisation was verified by principal component analysis. The use of the affective test acceptance and instrumental analysis combined with statistical methods allowed us to obtain promising results about the characteristics of gluten-free granola.
Resumo:
This study aimed at comparing both the results of wheat flour quality assessed by the new equipment Wheat Gluten Quality Analyser (WGQA) and those obtained by the extensigraph and farinograph. Fifty-nine wheat samples were evaluated for protein and gluten contents; the rheological properties of gluten and wheat flour were assessed using the WGQA and the extensigraph/farinograph methods, respectively, in addition to the baking test. Principal component analysis (PCA) and linear regression were used to evaluate the results. The parameters of energy and maximum resistance to extension determined by the extensigraph and WGQA showed an acceptable level for the linear correlation within the range from 0.6071 to 0.6511. The PCA results obtained using WGQA and the other rheological apparatus showed values similar to those expected for wheat flours in the baking test. Although all equipment used was effective in assessing the behavior of strong and weak flours, the results of medium strength wheat flour varied. WGQA has shown to use less amount of sample and to be faster and easier to use in relation to the other instruments used.
Resumo:
Avidins (Avds) are homotetrameric or homodimeric glycoproteins with typically less than 130 amino acid residues per monomer. They form a highly stable, non-covalent complex with biotin (vitamin H) with Kd = 10-15 M (for chicken Avd). The best-studied Avds are the chicken Avd from Gallus gallus and streptavidin from Streptomyces avidinii, although other Avd studies have also included Avds from various origins, e.g., from frogs, fishes, mushrooms and from many different bacteria. Several engineered Avds have been reported as well, e.g., dual-chain Avds (dcAvds) and single-chain Avds (scAvds), circular permutants with up to four simultaneously modifiable ligand-binding sites. These engineered Avds along with the many native Avds have potential to be used in various nanobiotechnological applications. In this study, we made a structure-based alignment representing all currently available sequences of Avds and studied the evolutionary relationship of Avds using phylogenetic analysis. First, we created an initial multiple sequence alignment of Avds using 42 closely related sequences, guided by the known Avd crystal structures. Next, we searched for non-redundant Avd sequences from various online databases, including National Centre for Biotechnology Information and the Universal Protein Resource; the identified sequences were added to the initial alignment to expand it to a final alignment of 242 Avd sequences. The MEGA software package was used to create distance matrices and a phylogenetic tree. Bootstrap reproducibility of the tree was poor at multiple nodes and may reflect on several possible issues with the data: the sequence length compared is relatively short and, whereas some positions are highly conserved and functional, others can vary without impinging on the structure or the function, so there are few informative sites; it may be that periods of rapid duplication have led to paralogs and that the differences among them are within the error limit of the data; and there may be other yet unknown reasons. Principle component analysis applied to alternative distance data did segregate the major groups, and success is likely due to the multivariate consideration of all the information. Furthermore, based on our extensive alignment and phylogenetic analysis, we expressed two novel Avds, lacavidin from Lactrodectus Hesperus, a western black widow spider, and hoefavidin from Hoeflea phototrophica, an aerobic marine bacterium, the ultimate aim being to determine their X-ray structures. These Avds were selected because of their unique sequences: lacavidin has an N-terminal Avd-like domain but a long C-terminal overhang, whereas hoefavidin was thought to be a dimeric Avd. Both these Avds could be used as novel scaffolds in biotechnological applications.
Resumo:
The CATCH Kids Club (CKC) is an after-school intervention that has attempted to address the growing obesity and physical inactivity concerns publicized in current literature. Using Self-Determination Theory (SDT: Deci & Ryan, 1985) perspective, this study's main research objective was to assess, while controlling for gender and age, i f there were significant differences between the treatment (CKC program participants) and control (non- eKC) groups on their perceptions of need satisfaction, intrinsic motivation and optimal challenge after four months of participation and after eight months of participation. For this study, data were collected from 79 participants with a mean age of9.3, using the Situational Affective State Questionnaire (SASQ: Mandigo et aI., 2008). In order to determine the common factors present in the data, a principal component analysis was conducted. The analysis resulted in an appropriate three-factor solution, with 14 items loading onto the three factors identified as autonomy, competence and intrinsic motivation. Initially, a multiple analysis of co-variance (MANCOY A) was conducted and found no significant differences or effects (p> 0.05). To further assess the differences between groups, six analyses of co-variance (ANeOY As) were conducted, which also found no significant differences (p >0 .025). These findings suggest that the eKC program is able to maintain the se1fdetermined motivational experiences of its participants, and does not thwart need satisfaction or self-determined motivation through its programming. However, the literature suggests that the CKe program and other P A interventions could be further improved by fostering participants' self-determined motivational experiences, which can lead to the persistence of healthy PA behaviours (Kilpatrick, Hebert & Jacobsen, 2002).
Resumo:
La fibrillation auriculaire est le trouble du rythme le plus fréquent chez l'homme. Elle conduit souvent à de graves complications telles que l'insuffisance cardiaque et les accidents vasculaires cérébraux. Un mécanisme neurogène de la fibrillation auriculaire mis en évidence. L'induction de tachyarythmie par stimulation du nerf médiastinal a été proposée comme modèle pour étudier la fibrillation auriculaire neurogène. Dans cette thèse, nous avons étudié l'activité des neurones cardiaques intrinsèques et leurs interactions à l'intérieur des plexus ganglionnaires de l'oreillette droite dans un modèle canin de la fibrillation auriculaire neurogène. Ces activités ont été enregistrées par un réseau multicanal de microélectrodes empalé dans le plexus ganglionnaire de l'oreillette droite. L'enregistrement de l'activité neuronale a été effectué continument sur une période de près de 4 heures comprenant différentes interventions vasculaires (occlusion de l'aorte, de la veine cave inférieure, puis de l'artère coronaire descendante antérieure gauche), des stimuli mécaniques (toucher de l'oreillette ou du ventricule) et électriques (stimulation du nerf vague ou des ganglions stellaires) ainsi que des épisodes induits de fibrillation auriculaire. L'identification et la classification neuronale ont été effectuées en utilisant l'analyse en composantes principales et le partitionnement de données (cluster analysis) dans le logiciel Spike2. Une nouvelle méthode basée sur l'analyse en composante principale est proposée pour annuler l'activité auriculaire superposée sur le signal neuronal et ainsi augmenter la précision de l'identification de la réponse neuronale et de la classification. En se basant sur la réponse neuronale, nous avons défini des sous-types de neurones (afférent, efférent et les neurones des circuits locaux). Leur activité liée à différents facteurs de stress nous ont permis de fournir une description plus détaillée du système nerveux cardiaque intrinsèque. La majorité des neurones enregistrés ont réagi à des épisodes de fibrillation auriculaire en devenant plus actifs. Cette hyperactivité des neurones cardiaques intrinsèques suggère que le contrôle de cette activité pourrait aider à prévenir la fibrillation auriculaire neurogène. Puisque la stimulation à basse intensité du nerf vague affaiblit l'activité neuronale cardiaque intrinsèque (en particulier pour les neurones afférents et convergents des circuits locaux), nous avons examiné si cette intervention pouvait être appliquée comme thérapie pour la fibrillation auriculaire. Nos résultats montrent que la stimulation du nerf vague droit a été en mesure d'atténuer la fibrillation auriculaire dans 12 des 16 cas malgré un effet pro-arythmique défavorable dans 1 des 16 cas. L'action protective a diminué au fil du temps et est devenue inefficace après ~ 40 minutes après 3 minutes de stimulation du nerf vague.
Resumo:
This paper describes a method for analyzing scoliosis trunk deformities using Independent Component Analysis (ICA). Our hypothesis is that ICA can capture the scoliosis deformities visible on the trunk. Unlike Principal Component Analysis (PCA), ICA gives local shape variation and assumes that the data distribution is not normal. 3D torso images of 56 subjects including 28 patients with adolescent idiopathic scoliosis and 28 healthy subjects are analyzed using ICA. First, we remark that the independent components capture the local scoliosis deformities as the shoulder variation, the scapula asymmetry and the waist deformation. Second, we note that the different scoliosis curve types are characterized by different combinations of specific independent components.
Resumo:
This paper presents a new paradigm for signal reconstruction and superresolution, Correlation Kernel Analysis (CKA), that is based on the selection of a sparse set of bases from a large dictionary of class- specific basis functions. The basis functions that we use are the correlation functions of the class of signals we are analyzing. To choose the appropriate features from this large dictionary, we use Support Vector Machine (SVM) regression and compare this to traditional Principal Component Analysis (PCA) for the tasks of signal reconstruction, superresolution, and compression. The testbed we use in this paper is a set of images of pedestrians. This paper also presents results of experiments in which we use a dictionary of multiscale basis functions and then use Basis Pursuit De-Noising to obtain a sparse, multiscale approximation of a signal. The results are analyzed and we conclude that 1) when used with a sparse representation technique, the correlation function is an effective kernel for image reconstruction and superresolution, 2) for image compression, PCA and SVM have different tradeoffs, depending on the particular metric that is used to evaluate the results, 3) in sparse representation techniques, L_1 is not a good proxy for the true measure of sparsity, L_0, and 4) the L_epsilon norm may be a better error metric for image reconstruction and compression than the L_2 norm, though the exact psychophysical metric should take into account high order structure in images.