750 resultados para CLASSIFIER
Resumo:
Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.
Resumo:
SUMMARY: A top scoring pair (TSP) classifier consists of a pair of variables whose relative ordering can be used for accurately predicting the class label of a sample. This classification rule has the advantage of being easily interpretable and more robust against technical variations in data, as those due to different microarray platforms. Here we describe a parallel implementation of this classifier which significantly reduces the training time, and a number of extensions, including a multi-class approach, which has the potential of improving the classification performance. AVAILABILITY AND IMPLEMENTATION: Full C++ source code and R package Rgtsp are freely available from http://lausanne.isb-sib.ch/~vpopovic/research/. The implementation relies on existing OpenMP libraries.
Resumo:
Abstract : This work is concerned with the development and application of novel unsupervised learning methods, having in mind two target applications: the analysis of forensic case data and the classification of remote sensing images. First, a method based on a symbolic optimization of the inter-sample distance measure is proposed to improve the flexibility of spectral clustering algorithms, and applied to the problem of forensic case data. This distance is optimized using a loss function related to the preservation of neighborhood structure between the input space and the space of principal components, and solutions are found using genetic programming. Results are compared to a variety of state-of--the-art clustering algorithms. Subsequently, a new large-scale clustering method based on a joint optimization of feature extraction and classification is proposed and applied to various databases, including two hyperspectral remote sensing images. The algorithm makes uses of a functional model (e.g., a neural network) for clustering which is trained by stochastic gradient descent. Results indicate that such a technique can easily scale to huge databases, can avoid the so-called out-of-sample problem, and can compete with or even outperform existing clustering algorithms on both artificial data and real remote sensing images. This is verified on small databases as well as very large problems. Résumé : Ce travail de recherche porte sur le développement et l'application de méthodes d'apprentissage dites non supervisées. Les applications visées par ces méthodes sont l'analyse de données forensiques et la classification d'images hyperspectrales en télédétection. Dans un premier temps, une méthodologie de classification non supervisée fondée sur l'optimisation symbolique d'une mesure de distance inter-échantillons est proposée. Cette mesure est obtenue en optimisant une fonction de coût reliée à la préservation de la structure de voisinage d'un point entre l'espace des variables initiales et l'espace des composantes principales. Cette méthode est appliquée à l'analyse de données forensiques et comparée à un éventail de méthodes déjà existantes. En second lieu, une méthode fondée sur une optimisation conjointe des tâches de sélection de variables et de classification est implémentée dans un réseau de neurones et appliquée à diverses bases de données, dont deux images hyperspectrales. Le réseau de neurones est entraîné à l'aide d'un algorithme de gradient stochastique, ce qui rend cette technique applicable à des images de très haute résolution. Les résultats de l'application de cette dernière montrent que l'utilisation d'une telle technique permet de classifier de très grandes bases de données sans difficulté et donne des résultats avantageusement comparables aux méthodes existantes.
Resumo:
A common way to model multiclass classification problems is by means of Error-Correcting Output Codes (ECOCs). Given a multiclass problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each subgroup of classes from each binary problem. However, we cannot guarantee that a linear classifier model convex regions. Furthermore, nonlinear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multiclass classification problems using subclass information in the ECOC framework. Complex problems are solved by splitting the original set of classes into subclasses and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceal the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.
Resumo:
Rapport de synthèseLe syndrome métabolique représente un ensemble de facteurs de risque métaboliques souvent présents simultanément et il est associé à un risque accru de développer des maladies cardiovasculaires. La prevalence du syndrome métabolique est à la hausse au niveau mondial comme cela a souvent été documenté, en particulier dans les pays développés. Pourtant, les données concernant le syndrome métabolique dans les pays de la région sub-saharienne restent rares.Au cours des dernières années, plusieurs définitions du syndrome métabolique ont été formulées, dont celle du 'National Cholesterol Education Program Adult Treatment Panel III', celle de 1 Organisation Mondiale de la Santé et celle du 'International Diabetes Federation'. Parmi les controverses au sujet du syndrome métabolique persiste la question de l'utilité de rechercher la présence du syndrome métabolique chez les patients diabétiques, étant donné que la présence d'un diabète en soit suffit pour identifier un individu à haut risque de faire un événement cardiovasculaire.L'objectif de ce travail de thèse a été de déterminer la prévalence du syndrome métabolique selon les trois définitions majeures mentionnées ci-dessus, grâce à une étude de population transversale, réalisée aux Seychelles en 2004 dans un échantillon représentatif de la population âgée de 24-65 ans (n=1255, taux de participation de 80.3%). L'intérêt d'examiner cette question dans ce pays était d'obtenir des informations dans un pays en transition épidémiologique.Les résultats de ce travail montrent que la prévalence du syndrome métabolique aux Seychelles est élevée, quelque soit la définition utilisée. Selon la définition utilisée, cette prévalence était d'environ 25% chez les hommes et variant entre 25 et 35% chez les femmes.Cependant, malgré des prévalences semblables selon ces trois définitions, la concordance entre ces définitions n'était pas bonne, impliquant que ces différentes définitions classifient, à un certain degré, des individus différents comme étant porteurs du syndrome métabolique.En outre, la plupart (environ 80%) des individus diabétiques avaient un syndrome métabolique. Après exclusion des individus diabétiques, la prévalence du syndrome métabolique dans la population est réduite d'environ un tiers, à environ 20-25%.Ces résultats montrent que, d'une part, le fardeau de maladie dû au syndrome métabolique aux Seychelles, un pays en voie de développement, est considérable. Cette observation peut potentiellement s'appliquer à d'autres pays à un stade de développement semblable. Cela renforce le besoin de mettre en oeuvre des stratégies de santé publique afin de cibler les causes de ces désordres métaboliques, tels que le surpoids et la sédentarité. D'un point de vue du diagnostic, les trois définitions du syndrome métabolique semblent classifier un nombre semblable de personnes atteints du syndrome métabolique dans cette population. Par contre, la relativement mauvaise concordance entre ces définitions - certaines personnes identifiés comme porteurs du syndrome métabolique selon une définition ne le sont pas selon une autre - confirme la nécessité de clarifier la signification de ces différentes définitions et/ou éventuellement de développer une définition unifiée et fiable du syndrome métabolique.
Resumo:
Computational anatomy with magnetic resonance imaging (MRI) is well established as a noninvasive biomarker of Alzheimer's disease (AD); however, there is less certainty about its dependency on the staging of AD. We use classical group analyses and automated machine learning classification of standard structural MRI scans to investigate AD diagnostic accuracy from the preclinical phase to clinical dementia. Longitudinal data from the Alzheimer's Disease Neuroimaging Initiative were stratified into 4 groups according to the clinical status-(1) AD patients; (2) mild cognitive impairment (MCI) converters; (3) MCI nonconverters; and (4) healthy controls-and submitted to a support vector machine. The obtained classifier was significantly above the chance level (62%) for detecting AD already 4 years before conversion from MCI. Voxel-based univariate tests confirmed the plausibility of our findings detecting a distributed network of hippocampal-temporoparietal atrophy in AD patients. We also identified a subgroup of control subjects with brain structure and cognitive changes highly similar to those observed in AD. Our results indicate that computational anatomy can detect AD substantially earlier than suggested by current models. The demonstrated differential spatial pattern of atrophy between correctly and incorrectly classified AD patients challenges the assumption of a uniform pathophysiological process underlying clinically identified AD.
Resumo:
Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.
Resumo:
In this paper we propose an endpoint detection system based on the use of several features extracted from each speech frame, followed by a robust classifier (i.e Adaboost and Bagging of decision trees, and a multilayer perceptron) and a finite state automata (FSA). We present results for four different classifiers. The FSA module consisted of a 4-state decision logic that filtered false alarms and false positives. We compare the use of four different classifiers in this task. The look ahead of the method that we propose was of 7 frames, which are the number of frames that maximized the accuracy of the system. The system was tested with real signals recorded inside a car, with signal to noise ratio that ranged from 6 dB to 30dB. Finally we present experimental results demonstrating that the system yields robust endpoint detection.
Resumo:
In this work we explore the multivariate empirical mode decomposition combined with a Neural Network classifier as technique for face recognition tasks. Images are simultaneously decomposed by means of EMD and then the distance between the modes of the image and the modes of the representative image of each class is calculated using three different distance measures. Then, a neural network is trained using 10- fold cross validation in order to derive a classifier. Preliminary results (over 98 % of classification rate) are satisfactory and will justify a deep investigation on how to apply mEMD for face recognition.
Resumo:
Introduction: la biopsie du ganglion sentinelle (GS) est une procédure reconnue et fiable pour établir le stade ganglionnaire du mélanome cutané. Le GS est le facteur pronostique le plus puissant pour la survie des patients atteints d'un mélanome à risque intermédiaire, cliniquement localisé. Celui-ci est métastatique dans environ 15-30% des cas. Lorsque le GS est positif, un curage de l'aire ganglionnaire concernée est généralement entrepris. Néanmoins, seuls 20-25% de ces patients présentent des ganglions non-sentinelles (GNS) métastatiques. Ces données suggèrent que le curage, et les risques opératoires qui y sont associés, n'est peut-être pas nécessaire chez le trois-quarts de ces patients. Un autre aspect est que l'impact sur la survie des curages basé sur le résultat du GS n'est pas clairement démontré. La nécessité de ce curage d'emblé est actuellement en cours d'évaluation par un protocole international (Multicenter Selective Lymphadenectomy Trial II : MSLT II). Plusieurs auteurs ont essayé de classifier la charge tumorale du GS afin d'évaluer s'il était possible d'épargner le curage à certains patients et de mieux affiner ce facteur pronostic sans succès. En 2009, le Groupe Mélanome de l'EORTC (European Organisation for Research and Treatment of Cancer) a recommandé un protocole d'évaluation anatomopathologique du GS-positif en trois items: (1) la localisation micro-anatomique des métastases à l'intérieur du ganglion selon Dewar (A = sous-capsulaire, B = combinée sous-capsulaire and parenchymateuse, C = parenchymateuse, D = multifocale, and'E = extensive) ; (2) la mesure de la taille tumorale dans le ganglion selon les critères de Rotterdam pour le diamètre maximal. Le diamètre de la plus grande métastase est exprimé en nombre absolu et (3) la taille tumorale stratifiée par catégories : <0.1mm, 0.1-1.0mm et >1.0 mm. Le but de cette étude rétrospective d'une cohorte de patients, était d'investiguer les résultats des GS-positifs et d'analyser les facteurs pronostiques de la survie à la lumière des recommandations de l'EORTC. Ainsi que de comparer les sous-groupes du GS-positif avec une invasion minimale (taille tumorale <0.1mm et/ou atteinte sous-capsulaire) avec le GS-négatif. Les facteurs pouvant prédire la présence de GNS- positif ont également été analysés. Matériel et méthode : une étude des dossiers a été réalisée pour les 499 patients consécutifs entre 1997 et 2008 qui ont eu une biopsie du GS dans notre institution. Le dégrée d'envahissement du GS-positif a été entièrement revue par l'équipe référente de l'Institut de Pathologie (Dresse E. Saiji et Dresse H. Bouzourène) selon les recommandations de l'EORTC. Des analyses univariées et multivariées des potentiels facteuis pronostics ont été réalisées. Des analyses de survie ont également été effectuées avec des courbes d'estimation de Kaplan-Meier combinées à une régression de Cox. Le protocole a été accepté par la Commission d'Ethique. Résultats: un GS-positif a été trouvé chez 123 (25%) patients panni les 499 qui ont bénéficié d'une biopsie. Avec un suivi médian de 52 mois, la survie à 5 ans sans récidive (SSR), spécifique à la maladie (SS) et globale (SG) étaient de 88%, 94%, et 90% respectivement pour les patients avec GS-négatif. Concernant les GS avec invasion minimale, 21 patients étaient dans le sous-groupe <0.1 mm selon les critères de Rotterdam et 52 patients dans le sous-groupe sous-capsulaire selon Dewar. La survie dans ces deux sous-groupes était de 80% et 57% pour la SSR, 87% et 70% pour la SS, 87% et 68% pour la SG, respectivement. L'analyse multivariée des GS-positifs a montré que les facteuis suivants influençaient significativement la survie (SSR, SS et SG): l'épaisseur selon Breslow de la tumeur primaire (p=0.002, 0.006, 0.004), la taille tumorale du GS-positif >0.1 mm (p= 0.01, 0.04, 0.03), le genre masculin (p=0.06, 0.005, 0.002) et l'ulcération de la tumeur primaire (p=0.05, 0.03, 0.007). L'analyse des sous-groupes avec invasion minimale n'a pas permis d'établir de facteur pour prédire la négativité des GNSs. Conclusion: La classification du GS-positif par la taille tumorale selon les critères de Rotterdam est un facteur pronostique simple et utile pour évaluer la survie des patients atteints de mélanome. Nous avons observé une tendance (non statistiquement significative) d'une survie diminuée pour le sous-groupe des patients avec GS-positif et une taille de la métastase <0.1 mm comparée à celle des patients avec GS-négatif. Ceci nous incite à conclure que ce sous-groupe de patients ne devrait pas être assimilé et traité comme ceux qui ont un GS-négatif. D'autre part nos résultats montrent que la localisation micro-anatomique selon Dewar n'est pas un outil pronostique utile pour évaluer la survie, ni pour prédire le status des GNSs.
Resumo:
BACKGROUND: Children and adolescents are at high risk of sustaining fractures during growth. Therefore, epidemiological assessment is crucial for fracture prevention. The AO Comprehensive Injury Automatic Classifier (AO COIAC) was used to evaluate epidemiological data of pediatric long bone fractures in a large cohort. METHODS: Data from children and adolescents with long bone fractures sustained between 2009 and 2011, treated at either of two tertiary pediatric surgery hospitals in Switzerland, were retrospectively collected. Fractures were classified according to the AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF). RESULTS: For a total of 2716 patients (60% boys), 2807 accidents with 2840 long bone fractures (59% radius/ulna; 21% humerus; 15% tibia/fibula; 5% femur) were documented. Children's mean age (SD) was 8.2 (4.0) years (6% infants; 26% preschool children; 40% school children; 28% adolescents). Adolescent boys sustained more fractures than girls (p < 0.001). The leading cause of fractures was falls (27%), followed by accidents occurring during leisure activities (25%), at home (14%), on playgrounds (11%), and traffic (11%) and school accidents (8%). There was boy predominance for all accident types except for playground and at home accidents. The distribution of accident types differed according to age classes (p < 0.001). Twenty-six percent of patients were classed as overweight or obese - higher than data published by the WHO for the corresponding ages - with a higher proportion of overweight and obese boys than in the Swiss population (p < 0.0001). CONCLUSION: Overall, differences in the fracture distribution were sex and age related. Overweight and obese patients seemed to be at increased risk of sustaining fractures. Our data give valuable input into future development of prevention strategies. The AO PCCF proved to be useful in epidemiological reporting and analysis of pediatric long bone fractures.
Resumo:
The objective of this work was to evaluate the application of the spectral-temporal response surface (STRS) classification method on Moderate Resolution Imaging Spectroradiometer (MODIS, 250 m) sensor images in order to estimate soybean areas in Mato Grosso state, Brazil. The classification was carried out using the maximum likelihood algorithm (MLA) adapted to the STRS method. Thirty segments of 30x30 km were chosen along the main agricultural regions of Mato Grosso state, using data from the summer season of 2005/2006 (from October to March), and were mapped based on fieldwork data, TM/Landsat-5 and CCD/CBERS-2 images. Five thematic classes were considered: Soybean, Forest, Cerrado, Pasture and Bare Soil. The classification by the STRS method was done over an area intersected with a subset of 30x30-km segments. In regions with soybean predominance, STRS classification overestimated in 21.31% of the reference values. In regions where soybean fields were less prevalent, the classifier overestimated 132.37% in the acreage of the reference. The overall classification accuracy was 80%. MODIS sensor images and the STRS algorithm showed to be promising for the classification of soybean areas in regions with the predominance of large farms. However, the results for fragmented areas and smaller farms were less efficient, overestimating soybean areas.
Resumo:
BACKGROUND: Therapy of chronic hepatitis C (CHC) with pegIFNα/ribavirin achieves a sustained virologic response (SVR) in ∼55%. Pre-activation of the endogenous interferon system in the liver is associated with non-response (NR). Recently, genome-wide association studies described associations of allelic variants near the IL28B (IFNλ3) gene with treatment response and with spontaneous clearance of the virus. We investigated if the IL28B genotype determines the constitutive expression of IFN stimulated genes (ISGs) in the liver of patients with CHC. METHODS: We genotyped 93 patients with CHC for 3 IL28B single nucleotide polymorphisms (SNPs, rs12979860, rs8099917, rs12980275), extracted RNA from their liver biopsies and quantified the expression of IL28B and of 8 previously identified classifier genes which discriminate between SVR and NR (IFI44L, RSAD2, ISG15, IFI22, LAMP3, OAS3, LGALS3BP and HTATIP2). Decision tree ensembles in the form of a random forest classifier were used to calculate the relative predictive power of these different variables in a multivariate analysis. RESULTS: The minor IL28B allele (bad risk for treatment response) was significantly associated with increased expression of ISGs, and, unexpectedly, with decreased expression of IL28B. Stratification of the patients into SVR and NR revealed that ISG expression was conditionally independent from the IL28B genotype, i.e. there was an increased expression of ISGs in NR compared to SVR irrespective of the IL28B genotype. The random forest feature score (RFFS) identified IFI27 (RFFS = 2.93), RSAD2 (1.88) and HTATIP2 (1.50) expression and the HCV genotype (1.62) as the strongest predictors of treatment response. ROC curves of the IL28B SNPs showed an AUC of 0.66 with an error rate (ERR) of 0.38. A classifier with the 3 best classifying genes showed an excellent test performance with an AUC of 0.94 and ERR of 0.15. The addition of IL28B genotype information did not improve the predictive power of the 3-gene classifier. CONCLUSIONS: IL28B genotype and hepatic ISG expression are conditionally independent predictors of treatment response in CHC. There is no direct link between altered IFNλ3 expression and pre-activation of the endogenous system in the liver. Hepatic ISG expression is by far the better predictor for treatment response than IL28B genotype.
Resumo:
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation‑based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi‑resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Among the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, have the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical‑based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.
Resumo:
The ability to obtain gene expression profiles from human disease specimens provides an opportunity to identify relevant gene pathways, but is limited by the absence of data sets spanning a broad range of conditions. Here, we analyzed publicly available microarray data from 16 diverse skin conditions in order to gain insight into disease pathogenesis. Unsupervised hierarchical clustering separated samples by disease as well as common cellular and molecular pathways. Disease-specific signatures were leveraged to build a multi-disease classifier, which predicted the diagnosis of publicly and prospectively collected expression profiles with 93% accuracy. In one sample, the molecular classifier differed from the initial clinical diagnosis and correctly predicted the eventual diagnosis as the clinical presentation evolved. Finally, integration of IFN-regulated gene programs with the skin database revealed a significant inverse correlation between IFN-β and IFN-γ programs across all conditions. Our study provides an integrative approach to the study of gene signatures from multiple skin conditions, elucidating mechanisms of disease pathogenesis. In addition, these studies provide a framework for developing tools for personalized medicine toward the precise prediction, prevention, and treatment of disease on an individual level.