976 resultados para CLASS-B
Resumo:
We report a case of HIV-1 superinfection (HSI) with a clade B, triple-class resistant virus in a patient successfully controlling viremia with continuous combination antiretroviral therapy started 8 years earlier during primary HIV infection. The course of HIV infection prior to HSI was monitored in both the source partner and recipient (8 and 11 years, respectively) and 4 years following HSI. This case report demonstrates re-infection with HIV-1 despite effective combination antiretroviral therapy.
Resumo:
The respective production of specific immunoglobulin (Ig)G2a or IgG1 within 5 d of primary immunization with Swiss type mouse mammary tumor virus [MMTV(SW)] or haptenated protein provides a model for the development of T helper 1 (Th1) and Th2 responses. The antibody-producing cells arise from cognate T cell B cell interaction, revealed by the respective induction of Cgamma2a and Cgamma1 switch transcript production, on the third day after immunization. T cell proliferation and upregulation of mRNA for interferon gamma in response to MMTV(SW) and interleukin 4 in response to haptenated protein also starts during this day. It follows that there is minimal delay in these responses between T cell priming and the onset of cognate interaction between T and B cells leading to class switching and exponential growth. The Th1 or Th2 profile is at least partially established at the time of the first cognate T cell interaction with B cells in the T zone. The addition of killed Bordetella pertussis to the hapten-protein induces nonhapten-specific IgG2a and IgG1 plasma cells, whereas the anti-hapten response continues to be IgG1 dominated. This indicates that a Th2 response to hapten-protein can proceed in a node where there is substantial Th1 activity.
Resumo:
NK cells can kill MHC-different or MHC-deficient but not syngeneic MHC-expressing target cells. This MHC class I-specific tolerance is acquired during NK cell development. MHC recognition by murine NK cells largely depends on clonally distributed Ly49 family receptors, which inhibit NK cell function upon ligand engagement. We investigated whether these receptors play a role for the development of NK cells and provide evidence that the expression of a Ly49 receptor transgene on developing NK cells endowed these cells with a significant developmental advantage over NK cells lacking such a receptor, but only if the relevant MHC ligand was present in the environment. The data suggest that the transgenic Ly49 receptor accelerates and/or rescues the development of NK cells which would otherwise fail to acquire sufficient numbers of self-MHC-specific receptors. Interestingly, the positive effect on NK cell development is most prominent when the MHC ligand is simultaneously present on both hemopoietic and nonhemopoietic cells. These findings correlate with functional data showing that MHC class I ligand on all cells is required to generate functionally mature NK cells capable of reacting to cells lacking the respective MHC ligand. We conclude that the engagement of inhibitory MHC receptors during NK cell development provides signals that are important for further NK cell differentiation and/or maturation.
Resumo:
Fifty one patients with ankylosing spondylitis (AS) were typed for HLA-A, B, C, DR, and DQ antigens. The antigen frequencies were compared with those of a normal population and with a B27 positive control group. All but one of the patients with AS were HLA-B27 positive. A positive linkage disequilibrium between Cw1, Cw2, DR1, and the B27 antigen was observed. Patients with AS showed a significant increase in DQw2 antigen compared with the B27 positive control group. No differences in antigenic frequencies were observed in patients having peripheral arthritis and patients with only axial involvement. Seven out of nine patients (78%) with an erosive peripheral arthritis were DR7 positive, suggesting that DR7 or genes closely linked could be related with a more aggressive peripheral joint involvement in patients with AS.
Resumo:
PURPOSE: As a first step for the development of a new cancer immunotherapy strategy, we evaluated whether antibody-mediated coating by MHC class I-related chain A (MICA) could sensitize tumor cells to lysis by natural killer (NK) cells. EXPERIMENTAL DESIGN: Recombinant MICA (rMICA) was chemically conjugated to Fab' fragments from monoclonal antibodies specific for tumor-associated antigens, such as carcinoembryonic antigen, HER2, or CD20. RESULTS: Flow cytometry analysis showed an efficient coating of MICA-negative human cancer cell lines with the Fab-rMICA conjugates. This was strictly dependent on the expression of the appropriate tumor-associated antigens in the target cells. Importantly, preincubation of the tumor cells with the appropriate Fab-rMICA conjugate resulted in NK cell-mediated tumor cell lysis. Antibody blocking of the NKG2D receptor in NK cells prevented conjugate-mediated tumor cell lysis. CONCLUSIONS: These results open the way to the development of immunotherapy strategies based on antibody-mediated targeting of MICA.
Resumo:
Major histocompatibility complex (MHC) class II-restricted antigen presentation is essential for the function of dendritic cells (DCs). We show here that plasmacytoid DCs (pDCs) differ from all other DC subsets with respect to expression of CIITA, the 'master regulator' of MHC class II genes. The gene encoding CIITA is controlled by three cell type-specific promoters: pI, pIII and pIV. With gene targeting in mice, we demonstrate that pDCs rely strictly on the B cell promoter pIII, whereas macrophages and all other DCs depend on pI. The molecular mechanisms driving MHC class II expression in pDCs are thus akin to those operating in lymphoid rather than myeloid cells.
Resumo:
RJ 2.2.5 is a human B cell line that has lost the capacity to express MHC class II genes. The human class II-positive phenotype is restored in somatic cell hybrids between RJ 2.2.5 and mouse spleen cells. By karyotype and molecular studies of an informative family of hybrids we have now shown that the reexpression of human class II gene products, as well as the maintenance of the mouse class II-positive phenotype, correlates with the presence of mouse chromosome 16. Thus, the existence on this mouse chromosome of a newly found locus, designated by us aIr-1, that determines a trans-acting activator function for class II gene expression, is established. Possible implications of this finding are discussed.
Resumo:
Macrophage migration inhibitory factor (MIF) is a homotrimeric multifunctional proinflammatory cytokine that has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Current therapeutic strategies for targeting MIF focus on developing inhibitors of its tautomerase activity or modulating its biological activities using anti-MIF neutralizing antibodies. Herein we report a new class of isothiocyanate (ITC)-based irreversible inhibitors of MIF. Modification by benzyl isothiocyanate (BITC) and related analogues occurred at the N-terminal catalytic proline residue without any effect on the oligomerization state of MIF. Different alkyl and arylalkyl ITCs modified MIF with nearly the same efficiency as BITC. To elucidate the mechanism of action, we performed detailed biochemical, biophysical, and structural studies to determine the effect of BITC and its analogues on the conformational state, quaternary structure, catalytic activity, receptor binding, and biological activity of MIF. Light scattering, analytical ultracentrifugation, and NMR studies on unmodified and ITC-modified MIF demonstrated that modification of Pro1 alters the tertiary, but not the secondary or quaternary, structure of the trimer without affecting its thermodynamic stability. BITC induced drastic effects on the tertiary structure of MIF, in particular residues that cluster around Pro1 and constitute the tautomerase active site. These changes in tertiary structure and the loss of catalytic activity translated into a reduction in MIF receptor binding activity, MIF-mediated glucocorticoid overriding, and MIF-induced Akt phosphorylation. Together, these findings highlight the role of tertiary structure in modulating the biochemical and biological activities of MIF and present new opportunities for modulating MIF biological activities in vivo.
Resumo:
Immunogenicity of a long 20-mer NY-ESO-1f peptide vaccine was evaluated in a lung cancer patient TK-f01, immunized with the peptide with Picibanil OK-432 and Montanide ISA-51. We showed that internalization of the peptide was necessary to present CD8 T-cell epitopes on APC, contrasting with the direct presentation of the short epitope. CD8 T-cell responses restricted to all five HLA class I alleles were induced in the patient after the peptide vaccination. Clonal analysis showed that B*35:01 and B*52:01-restricted CD8 T-cell responses were the two dominant responses. The minimal epitopes recognized by A*24:02, B*35:01, B*52:01 and C*12:02-restricted CD8 T-cell clones were defined and peptide/HLA tetramers were produced. NY-ESO-1 91-101 on A*24:02, NY-ESO-1 92-102 on B*35:01, NY-ESO-1 96-104 on B*52:01 and NY-ESO-1 96-104 on C*12:02 were new epitopes first defined in this study. Identification of the A*24:02 epitope is highly relevant for studying the Japanese population because of its high expression frequency (60%). High affinity CD8 T-cells recognizing tumor cells naturally expressing the epitopes and matched HLA were induced at a significant level. The findings suggest the usefulness of a long 20-mer NY-ESO-1f peptide harboring multiple CD8 T-cell epitopes as an NY-ESO-1 vaccine. Characterization of CD8 T-cell responses in immunomonitoring using peptide/HLA tetramers revealed that multiple CD8 T-cell responses comprised the dominant response.
Resumo:
The main sources of coarse aggregate for secondary slip form paving in Southwest Iowa exhibit undesirable "D" cracking. "D" cracking is a discoloration of the concrete caused by fine, hairline cracks. These cracks are caused by the freezing and thawing of moisture inside the coarse aggregate. The cracks are often hour glass shaped, are parallel to each other, and occur along saw joints. The B-4, a typical secondary mix, utilizes 50% fine aggregate and 50% coarse aggregate. It has been proposed that a concrete mix with less coarse aggregate and more fine aggregate might impede this type of deterioration. The Nebraska Standard 47B Mix, a 70% fine aggregate, and 30% coarse aggregate mix, as used by Nebraska Department of Roads produces concrete with ultimate strengths in excess of 4500 psi but because of the higher cost of cement (it is a six bag per cubic yard mix) is not competitive with our present secondary mixes. The sands of Southwest Iowa generally have poorer mortar strengths than the average Iowa Sand. Class V Aggregate also found in Southwest Iowa has a coarser sand fraction, therefore it has a better mortar strength, but exhibits an acidic reaction and therefore must be·used with limestone. This illustrates the need to find a mix for use in Southwest Iowa that possesses adequate strength and satisfactory durability at a low cost. The purpose of this study is to determine a concrete mix with an acceptable cement content which will produce physical properties similar to that of our present secondary paving mixes.
Resumo:
Superantigens (SAgs) encoded by infectious mouse mammary tumor viruses (MMTVs) play a crucial role in the viral life cycle. Their expression by infected B cells induces a proliferative immune response by SAg-reactive T cells which amplifies MMTV infection. This response most likely ensures stable MMTV infection and transmission to the mammary gland. Since T cell reactivity to SAgs from endogenous Mtv loci depends on MHC class II molecules expressed by B cells, we have determined the ability of MMTV to infect various MHC congenic mice. We show that MHC class II I-E+ compared with I-E- mouse strains show higher levels of MMTV infection, most likely due to their ability to induce a vigorous SAg-dependent immune response following MMTV encounter. Inefficient infection is observed in MHC class II I-E- mice, which have been shown to present endogenous SAgs poorly. Therefore, during MMTV infection the differential ability of MHC class II molecules to form a functional complex with SAg determines the magnitude of the proliferative response of SAg-reactive T cells. This in turn influences the degree of T cell help provided to infected B cells and therefore the efficiency of amplification of MMTV infection.
Resumo:
PURPOSE OF REVIEW: The review aims at comprehensively discussing our current knowledge on bone metastases incidence in non-small cell lung cancer (NSCLC), their related complications as well as clinical impact in patients suffering from advanced disease. RECENT FINDINGS: After evoking the use of zoledronic acid as the established standard of care until recently, the new class of drugs available to prevent skeletal related events and targeting receptor activator of nuclear factor-kappa B (RANK) will be emphasized, reporting on denosumab clinical trials, a RANK-ligand (RANKL) targeting monoclonal antibody. Biological hypothesis regarding their mechanisms of action as well a potential direct impact on tumor cells are described according to the most recent laboratory as well as hypothesis-generating clinical data. SUMMARY: Targeting the RANK pathway is an efficient way to prevent complications of bone metastases in NSCLC. Interesting additional direct effects on tumor biology and evolution are being analyzed and prospectively assessed in clinical trials.
Resumo:
Lat(Y136F) knock-in mice harbor a point mutation in Tyr(136) of the linker for activation of T cells and show accumulation of Th2 effector cells and IgG1 and IgE hypergammaglobulinemia. B cell activation is not a direct effect of the mutation on B cells since in the absence of T cells, mutant B cells do not show an activated phenotype. After adoptive transfer of linker for activation of T cell mutant T cells into wild-type, T cell-deficient recipients, recipient B cells become activated. We show in vivo and in vitro that the Lat(Y136F) mutation promotes T cell-dependent B cell activation leading to germinal center, memory, and plasma cell formation even in an MHC class II-independent manner. All the plasma and memory B cell populations found in physiological T cell-dependent B cell responses are found. Characterization of the abundant plasmablasts found in secondary lymphoid organs of Lat(Y136F) mice revealed the presence of a previously uncharacterized CD93-expressing subpopulation, whose presence was confirmed in wild-type mice after immunization. In Lat(Y136F) mice, B cell activation was polyclonal and not Ag-driven because the increase in serum IgG1 and IgE concentrations involved Abs and autoantibodies with different specificities equally. Although the noncomplement-fixing IgG1 and IgE are the only isotypes significantly increased in Lat(Y136F) serum, we observed early-onset systemic autoimmunity with nephritis showing IgE autoantibody deposits and severe proteinuria. These results show that Th2 cells developing in Lat(Y136F) mice can trigger polyclonal B cell activation and thereby lead to systemic autoimmune disease.
Resumo:
There is growing evidence that lymphocytes impact the development and/or function of other lymphocyte populations. Based on such observations we have tested whether the NK cell compartment was phenotypically and functionally altered in the absence of B and/or T cells. Here we show that T cell deficiency significantly accelerates BM NK cell production and the subsequent seeding of splenic and liver NK cell compartments. In contrast, B cell deficiency reduces splenic NK cell survival. In the absence of T and B cells, the size of the NK cell compartments is determined by the combination of these positive and negative effects. Even though NK cell homeostasis is significantly altered, NK cells from T and/or B cell-deficient mice show a normal capacity to kill a susceptible target cell line and to produce IFN. Nevertheless, we noted that the usage of MHC class I-specific Ly49 family receptors was significantly altered in the absence of T and/or B cells. In general, B cell deficiency expanded Ly49 receptor usage, while T cell deficiency exerted both positive and negative effects. These findings show that B and T cells significantly and differentially influence the homeostasis and the phenotype of NK cells.
Resumo:
Narcolepsy is a rare sleep disorder with the strongest human leukocyte antigen (HLA) association ever reported. Since the associated HLA-DRB1*1501-DQB1*0602 haplotype is common in the general population (15-25%), it has been suggested that it is almost necessary but not sufficient for developing narcolepsy. To further define the genetic basis of narcolepsy risk, we performed a genome-wide association study (GWAS) in 562 European individuals with narcolepsy (cases) and 702 ethnically matched controls, with independent replication in 370 cases and 495 controls, all heterozygous for DRB1*1501-DQB1*0602. We found association with a protective variant near HLA-DQA2 (rs2858884; P < 3 x 10(-8)). Further analysis revealed that rs2858884 is strongly linked to DRB1*03-DQB1*02 (P < 4 x 10(-43)) and DRB1*1301-DQB1*0603 (P < 3 x 10(-7)). Cases almost never carried a trans DRB1*1301-DQB1*0603 haplotype (odds ratio = 0.02; P < 6 x 10(-14)). This unexpected protective HLA haplotype suggests a virtually causal involvement of the HLA region in narcolepsy susceptibility.