978 resultados para CHROMOSOMAL TRANSLOCATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meiotic drive has attracted much interest because it concerns the robustness of Mendelian segregation and its genetic and evolutionary stability. We studied chromosomal meiotic drive in the common shrew (Sorex araneus, Insectivora, Mammalia), which exhibits one of the most remarkable chromosomal polymorphisms within mammalian species. The open question of the evolutionary success of metacentric chromosomes (Robertsonian fusions) versus acrocentrics in the common shrew prompted us to test whether a segregation distortion in favor of metacentrics is present in female and/or male meiosis. Performing crosses under controlled laboratory conditions with animals from natural populations, we found a clear trend toward a segregation distortion in favor of metacentrics during male meiosis, two chromosome combinations (gm and jl) being significantly preferred over their acrocentric homologs. Apart for one Robertsonian fusion (hi), this trend was absent in female meiosis. We propose a model based on recombination events between twin acrocentrics to explain the difference in transmission ratios of the same metacentric in different sexes and unequal drive of particular metacentrics in the same sex. Pooled data for female and male meiosis revealed a trend toward stronger segregation distortion for larger metacentrics. This is partially in agreement with the frequency of metacentrics occurring in natural populations of a chromosome race showing a high degree of chromosomal polymorphism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: At least 2 apparently independent mechanisms, microsatellite instability (MSI) and chromosomal instability, are implicated in colorectal tumorigenesis. Their respective roles in predicting clinical outcomes of patients with T3N0 colorectal cancer remain unknown. METHODS: Eighty-eight patients with a sporadic T3N0 colon or rectal adenocarcinoma were followed up for a median of 67 months. For chromosomal instability analysis, Ki-ras mutations were determined by single-strand polymerase chain reaction, and p53 protein staining was studied by immunohistochemistry. For MSI analysis, DNA was amplified by polymerase chain reaction at 7 microsatellite targets (BAT25, BAT26, D17S250, D2S123, D5S346, transforming growth factor receptor II, and BAX). RESULTS: Overall 5-year survival rate was 72%. p53 protein nuclear staining was detected in 39 patients (44%), and MSI was detected in 21 patients (24%). MSI correlated with proximal location (P <.001) and mucinous content (P <.001). In a multivariate analysis, p53 protein expression carried a significant risk of death (relative risk = 4.0, 95% CI = 1.6 to 10.1, P =.004). By comparison, MSI was not a statistically significant prognostic factor for survival in this group (relative risk = 2.2, 95% CI = 0.6 to 7.3, P =.21). CONCLUSIONS: p53 protein overexpression provides better prognostic discrimination than MSI in predicting survival of patients with T3N0 colorectal cancer. Although MSI is associated with specific clinicopathologic parameters, it did not predict overall survival in this group. Assessment of p53 protein expression by immunocytochemistry provides a simple means to identify a subset of T3N0 patients with a 4-times increased risk for death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GLUT8 is a high-affinity glucose transporter present mostly in testes and a subset of brain neurons. At the cellular level, it is found in a poorly defined intracellular compartment in which it is retained by an N-terminal dileucine motif. Here we assessed GLUT8 colocalization with markers for different cellular compartments and searched for signals, which could trigger its cell surface expression. We showed that when expressed in PC12 cells, GLUT8 was located in a perinuclear compartment in which it showed partial colocalization with markers for the endoplasmic reticulum but not with markers for the trans-Golgi network, early endosomes, lysosomes, and synaptic-like vesicles. To evaluate its presence at the plasma membrane, we generated a recombinant adenovirus for the expression of GLUT8 containing an extracellular myc epitope. Cell surface expression was evaluated by immunofluorescence microscopy of transduced PC12 cells or primary hippocampal neurons exposed to different stimuli. Those included substances inducing depolarization, activation of protein kinase A and C, activation or inhibition of tyrosine kinase-linked signaling pathways, glucose deprivation, AMP-activated protein kinase stimulation, and osmotic shock. None of these stimuli-induced GLUT8 cell surface translocation. Furthermore, when GLUT8myc was cotransduced with a dominant-negative form of dynamin or GLUT8myc-expressing PC-12 cells or neurons were incubated with an anti-myc antibody, no evidence for constitutive recycling of the transporter through the cell surface could be obtained. Thus, in cells normally expressing it, GLUT8 was associated with a specific intracellular compartment in which it may play an as-yet-uncharacterized role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: It has been suggested that chromosomal rearrangements harbor the molecular footprint of the biological phenomena which they induce, in the form, for instance, of changes in the sequence divergence rates of linked genes. So far, all the studies of these potential associations have focused on the relationship between structural changes and the rates of evolution of single-copy DNA and have tried to exclude segmental duplications (SDs). This is paradoxical, since SDs are one of the primary forces driving the evolution of structure and function in our genomes and have been linked not only with novel genes acquiring new functions, but also with overall higher DNA sequence divergence and major chromosomal rearrangements.Results: Here we take the opposite view and focus on SDs. We analyze several of the features of SDs, including the rates of intraspecific divergence between paralogous copies of human SDs and of interspecific divergence between human SDs and chimpanzee DNA. We study how divergence measures relate to chromosomal rearrangements, while considering other factors that affect evolutionary rates in single copy DNA. Conclusion: We find that interspecific SD divergence behaves similarly to divergence of single-copy DNA. In contrast, old and recent paralogous copies of SDs do present different patterns of intraspecific divergence. Also, we show that some relatively recent SDs accumulate in regions that carry inversions in sister lineages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CREB is a cAMP-responsive nuclear DNA-binding protein that binds to cAMP response elements and stimulates gene transcription upon activation of the cAMP signalling pathway. The protein consists of an amino-terminal transcriptional transactivation domain and a carboxyl-terminal DNA-binding domain (bZIP domain) comprised of a basic region and a leucine zipper involved in DNA recognition and dimerization, respectively. Recently, we discovered a testis-specific transcript of CREB that contains an alternatively spliced exon encoding multiple stop codons. CREB encoded by this transcript is a truncated protein lacking the bZIP domain. We postulated that the antigen detected by CREB antiserum in the cytoplasm of germinal cells is the truncated CREB that must also lack its nuclear translocation signal (NTS). To test this hypothesis we prepared multiple expression plasmids encoding carboxyl-terminal deletions of CREB and transiently expressed them in COS-1 cells. By Western immunoblot analysis as well as immunocytochemistry of transfected cells, we show that CREB proteins truncated to amino acid 286 or shorter are sequestered in the cytoplasm, whereas a CREB of 295 amino acids is translocated into the nucleus. Chimeric CREBs containing a heterologous NTS fused to the first 248 or 261 amino acids of CREB are able to drive the translocation of the protein into the nucleus. Thus, the nine amino acids in the basic region involved in DNA recognition between positions 287 and 295 (RRKKKEYVK) of CREB contain the NTS. Further, mutation of the lysine at position 290 in CREB to an asparagine diminishes nuclear translocation of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to assess the possible transport of cyanogenic glycosides from leaves of rubber tree crown clones (Hevea spp.) resistant to South American leaf blight to the trunk of the panel clones in which they are grafted. The cyanogenic potential (HCNp) of the crown clones was determined in the trunk bark, at different distances from the cambium, and its gradient was evaluated along the trunk. The correlation between the HCNp of the crown leaves and that of the trunk bark was also evaluated. HCNp determined in leaves showed a wide range variation in the species studied as crown clones, with the lowest values registered in H. nitida clones, and the highest ones in H. rigidifolia. In the trunk bark, the tissue layer nearer the cambium showed higher HCNp values. A positive basipetal gradient was observed along the trunk, i.e., there was an increase in HCNp from the apex toward the base. Although the grafted crowns influence the cyanogenic potential of the trunk bark of panel clones, the absence of correlation between the HCNp of the leaves and trunk bark indicates that the crown is not the main source of the cyanogenic glycosides found in the trunk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rb fusions between acrocentric chromosomes leading to metacentrics tend to become fixed during the chromosomal evolution in the common shrew. Using microsatellite markers preliminary results show that populations are only slightly subdivided and genetic drift seems not to play an important role for the fixation of metacentrics. A significant segregation distortion in favour of metacentric chromosomes was found during male meiosis. This suggests that cytological factors such as facilitated fusion between acrocentric chromosomes or choice-effects at the level of gametes are more likely to play a role for the chromosomal evolution in the common shrew.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To the origins and evolution of Indomalayan shrews, we investigated the chromosomal variations of 14 species of Crocidura from SE Asia. Intraspecific polymorphism was mainly due to variation in the number of short chromosomal arms but C. lepidura and C. hutanis showed a polymorphism due to a centric fusion. The undifferentially stained karyotypes were similar in 9 species, all possessing 2n = 38 and FN = 54-56 (68); C. fuliginosa had 2n = 40 and FN = 54-58. These karyotypes are close to the presumed ancestral state for the genus Crocidura. Four species from Sulawesi had a reduced diploid number (2n = 30-34), a trend not observed among other SE Asian species but present in few Palaearctic taxa. Compared to the apparent stasis of karyotypic evolution observed among other SE Asian species, the high degree of interspecific differences reported among Sulawesian shrews is unusual and needs further investigation. Stasis and reduction in diploid number found in both Indomalayan and Palaeractic species suggest that these two groups share a common ancestry. This is in sharp contrast to most Afrotropical species which evolved towards higher diploid and fundamental numbers. The zoogeographical implications of these results are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha-proteobacterium Caulobacter crescentus is characterized by its asymmetric cell division, which gives rise to a replicating stalked cell and a non-replicating swarmer cell. Thus, the initiation of chromosomal replication is tightly regulated, temporally and spatially, to ensure that it is coordinated with cell differentiation and cell cycle progression. Waves of DnaA and CtrA activities control when and where the initiation of DNA replication will take place in C. crescentus cells. The conserved DnaA protein initiates chromosomal replication by directly binding to sites within the chromosomal origin (Cori), ensuring that DNA replication starts once and only once per cell cycle. The CtrA response regulator represses the initiation of DNA replication in swarmer cells and in the swarmer compartment of pre-divisional cells, probably by competing with DnaA for binding to Cori. CtrA and DnaA are controlled by multiple redundant regulatory pathways that include DNA methylation-dependent transcriptional regulation, temporally regulated proteolysis and the targeting of regulators to specific locations within the cell. Besides being critical regulators of chromosomal replication, CtrA and DnaA are also master transcriptional regulators that control the expression of many genes, thus connecting DNA replication with other events of the C. crescentus cell cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Pediatric follicular lymphoma (FL) is a rare disease that differs from its adult counterpart both genetically and clinically. Excluding pediatric FL with IRF4-translocation, the genetic events associated with pediatric FL have not yet been defined. Objectives: The aim of this study was to perform a complete genetic characterization of IRF4-translocation negative pediatric follicular lymphomas to elucidate the genetic profile of these rare pediatric cases and determine common genetic alterations that could be associated to this phenotype. Design/Methods: We applied array-comparative genomic hybridization and molecular inversion probe assay adapted to formalin-fixed paraffin-embedded tissues from 18 patients aged £18 years diagnosed with FL. With the exception of one case with only focal involvement by lymphoma, the tumor cell content exceeded 50% in the evaluable samples. Eleven of 18 patients were treated according to NHL-BFM group multicenter trials whereas the remaining according to different protocols. All lacked t(14;18) translocation. Mutational analysis of TNFRSF14 gene was performed in 17 cases. Results: Only six pediatric cases displayed chromosomal imbalances, with gain/amplification of 6pter-p24.3 (including IRF4) and deletion/ copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being the most frequent alterations. Sequencing of the candidate gene TNFRSF14 at 1p36.32 showed nine mutations in seven cases. Conclusion: Combination of molecular and genetic features differentiated a recurrent pattern of genomic imbalances as well as of TNFRSF14 mutations in pediatric FL which together with other genetic alterations distinguishes two subsets of pediatric follicular lymphomas. The first group shows genomic aberrations and is associated with more aggressive histopathologic and clinical features. The second group lacks genetic alterations detectable with the present approaches and is associated with a more limited disease. Despite the absence of genomic aberrations, these cases resembled FL by their histopathological features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aldosterone and corticosterone bind to mineralocorticoid (MR) and glucocorticoid receptors (GR), which, upon ligand binding, are thought to translocate to the cell nucleus to act as transcription factors. Mineralocorticoid selectivity is achieved by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) that inactivates 11β-hydroxy glucocorticoids. High expression levels of 11β-HSD2 characterize the aldosterone-sensitive distal nephron (ASDN), which comprises the segment-specific cells of late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct (CD). We used MR- and GR-specific antibodies to study localization and regulation of MR and GR in kidneys of rats with altered plasma aldosterone and corticosterone levels. In control rats, MR and GR were found in cell nuclei of thick ascending limb (TAL), DCT, CNT, CD cells, and intercalated cells (IC). GR was also abundant in cell nuclei and the subapical compartment of proximal tubule (PT) cells. Dietary NaCl loading, which lowers plasma aldosterone, caused a selective removal of GR from cell nuclei of 11β-HSD2-positive ASDN. The nuclear localization of MR was unaffected. Adrenalectomy (ADX) resulted in removal of MR and GR from the cell nuclei of all epithelial cells. Aldosterone replacement rapidly relocated the receptors in the cell nuclei. In ASDN cells, low-dose corticosterone replacement caused nuclear localization of MR, but not of GR. The GR was redistributed to the nucleus only in PT, TAL, early DCT, and IC that express no or very little 11β-HSD2. In ASDN cells, nuclear GR localization was only achieved when corticosterone was replaced at high doses. Thus ligand-induced nuclear translocation of MR and GR are part of MR and GR regulation in the kidney and show remarkable segment- and cell type-specific characteristics. Differential regulation of MR and GR may alter the level of heterodimerization of the receptors and hence may contribute to the complexity of corticosteroid effects on ASDN function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal inversion clines paralleling the long-standing ones in native Palearctic populations of Drosophila subobscura evolved swiftly after this species invaded the Americas in the late 1970s and early 1980s. However, the new clines did not consistently continue to converge on the Old World baseline. Our recent survey of Chilean populations of D. subobscura shows that inversion clines have faded or even changed sign with latitude. Here, we investigate the hypothesis that this fading of inversion clines might be due to the Bogert effect, namely, that flies' thermoregulatory behavior has eventually compensated for environmental variation in temperature, thus buffering selection on thermal-related traits. We show that latitudinal divergence in thermal preference (T-p) has evolved in Chile for females, with higher-latitude flies having a lower mean T-p. Plastic responses in T-p also lessen latitudinal thermal variation because flies developed at colder temperatures prefer warmer microclimates. Our results are consistent with the idea that active behavioral thermoregulation might buffer environmental variation and reduce the potential effect of thermal selection on other traits as chromosomal arrangements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleoside transporters (NTs) mediate the uptake of nucleosides and nucleobases across the plasma membrane, mostly for salvage purposes. The canonical NTs belong to two gene families, SLC29 and SLC28. The former encode equilibrative nucleoside transporter proteins (ENTs), which mediate the facilitative diffusion of natural nucleosides with broad selectivity, whereas the latter encode concentrative nucleoside transporters (CNTs), which are sodium-coupled and show high affinity for substrates with variable selectivity. These proteins are expressed in most cell types, exhibiting apparent functional redundancy. This might indicate that CNTs play specific roles in the physiology of the cell beyond nucleoside salvage. Here, we addressed this possibility using adenoviral vectors to restore tumor cell expression of hCNT1 or a polymorphic variant (hCNT1S546P) lacking nucleoside translocation ability. We found that hCNT1 restoration in pancreatic cancer cells significantly altered cell-cycle progression and phosphorylation status of key signal-transducing kinases, promoted poly-(ADP ribose) polymerase hyperactivation and cell death, and reduced tumor growth and cell migration. Importantly, the translocation-defective transporter triggered these same effects on cell physiology. These data predict a novel and totally unexpected biological role for the nucleoside transporter protein hCNT1 that appears to be independent of its role as mediator of nucleoside uptake by cells, thereby suggesting a transceptor function. Cell Death & Disease Anastasis Stephanou Receiving Editor Cell Death & Disease 19th Apr 2013 Dr Perez-Torras Av/ Diagonal 643. Edif. Prevosti, Pl -1 Barcelona 08028 Spain RE: Manuscript CDDIS-13-0136R, 'CDDIS-13-0136R' Dear Dr Perez-Torras, It is a pleasure to inform you that your manuscript has been evaluated at the editorial level and has now been officially accepted for publication in Cell Death & Disease, pending you meet the following editorial requirements: 1) the list of the abbreviations is missing please include Could you send us the revised text as word file via e-mail and we will proceed and transfer the paper onto our typesetters. Please download, print, sign, and return the Licence to Publish Form using the link below. This must be returned via FAX to ++ 39 06 7259 6977 before your manuscript can be published:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Mantle cell lymphoma (MCL) is genetically characterized by the t(11;14)(q13;q32) translocation and a high number of secondary chromosomal alterations. The contribution of DNA methylation to MCL lymphomagenesis is not well known. We sought to identify epigenetically silenced genes in these tumours that might have clinical relevance. Methodology/Principal Findings: To identify potential methylated genes in MCL we initially investigated seven MCL cell lines treated with epigenetic drugs and gene expression microarray profiling. The methylation status of selected candidate genes was validated by a quantitative assay and subsequently analyzed in a series of primary MCL (n=38). After pharmacological reversion we identified 252 potentially methylated genes. The methylation analysis of a subset of these genes (n=25) in the MCL cell lines and normal B lymphocytes confirmed that 80% of them were methylated in the cell lines but not in normal lymphocytes. The subsequent analysis in primary MCL identified five genes (SOX9,HOXA9,AHR,NR2F2 ,and ROBO1) frequently methylated in these tumours. The gene methylation events tended to occur in the same primary neoplasms and correlated with higher proliferation, increased number of chromosomal abnormalities, and shorter survival of the patients. Conclusions: We have identified a set of genes whose methylation degree and gene expression levels correlate with aggressive clinicopathological features of MCL. Our findings also suggest that a subset of MCL might show a CpG island methylator phenotype (CIMP) that may influence the behaviour of the tumours.