193 resultados para CHLOROPLASTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical tweezers are widely used for the manipulation of cells and their internal structures. However, the degree of manipulation possible is limited by poor control over the orientation of the trapped cells. We show that it is possible to controllably align or rotate disc-shaped cells-chloroplasts of Spinacia oleracea-in a plane-polarized Gaussian beam trap, using optical torques resulting predominantly from circular polarization induced in the transmitted beam by the non-spherical shape of the cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant vacuoles are multi-functional, developmentally varied and can occupy up to 90% of plant cells. The N-terminal propeptide (NTPP) of sweet potato sporamin and the C-terminal propeptide (CTPP) of tobacco chitinase have been developed as models to target some heterologous proteins to vacuoles but so far tested on only a few plant species, vacuole types and payload proteins. Most studies have focused on lytic and protein-storage vacuoles, which may differ substantially from the sugar-storage vacuoles in crops like sugarcane. Our results extend the evidence that NTPP of sporamin can direct heterologous proteins to vacuoles in diverse plant species and indicate that sugarcane sucrose-storage vacuoles (like the lytic vacuoles in other plant species) are hostile to heterologous proteins. A low level of cytosolic NTPP-GFP (green fluorescent protein) was detectable in most cell types in sugarcane and Arabidopsis, but only Arabidopsis mature leaf mesophyll cells accumulated NTPP-GFP to detectable levels in vacuoles. Unexpectedly, efficient developmental mis-trafficking of NTPP-GFP to chloroplasts was found in young leaf mesophyll cells of both species. Vacuolar targeting by tobacco chitinase CTPP was inefficient in sugarcane, leaving substantial cytoplasmic activity of rat lysosomal beta-glucuronidase (GUS) [ER (endoplasmic reticulum)-RGUS-CTPP]. Sporamin NTPP is a promising targeting signal for studies of vacuolar function and for metabolic engineering. Such applications must take account of the efficient developmental mis-targeting by the signal and the instability of most introduced proteins, even in storage vacuoles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low temperature injury (LTI) of roses (Rosa hybrida L.) is difficult to assess by visual observation. Relative chlorophyll fluorescence (CF; F-v/F-m) is a non-invasive technique that provides an index of stress effects on photosystem 11 (PS 11) activity. This instrumental technique allows determination of the photosynthetic efficiency of plant tissues containing chloroplasts, such as rose leaves. In the present study, pre- and Post-Storage measurements of F-v/F-m were carried out to assess LTI in 'First Red' and 'Akito' roses harvested year round. Relationships between the pre-harvest environment conditions of temperature, relative humidity and photon flux density (PFD), F-v/F-m, and, vase life duration after storage are reported. After harvest, roses were stored at 1, 5 and 10 degrees C for 10 days. Non-stored roses were the control treatment. F-v/F-m ratios were reduced following storage, suggesting LTI of roses. However, reductions in F-v/F-m were not closely correlated with reduced vase life duration and were seasonally dependent. Only during winter experiments was F-v/F-m of roses stored at 1 degrees C significantly (P <= 0.001) lower compared to F-v/F-m of non-stored control roses and roses stored at 5 and 10 degrees C. Thus, the fall of F-v/F-m was due to an interaction of growing season and storage at 1 degrees C. Vase lives of roses grown during winter were significantly (P <= 0.001) shorter compared to roses grown during summer. Length of vase life was intermediate for roses grown during autumn and spring. Because of the lack of correlation between F-v/F-m and post-storage vase life it is concluded that the CF parameter F-v/F-m is nota practical index for assessing LTI in cold-stored roses. Higher PFD and temperature in summer were positively and significantly correlated with maintenance of post-storage FvIF ratios and longer vase life. It is suggested that shorter vase lives and lower post-storage F-v/F-m values after storage at 1 degrees C are consequences of reduced photosynthesis and smaller carbohydrate pools in winter-harvested roses. (c) 2004 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iridescent blue leaf coloration in two neotropical ferns, Danaea nodosa (L.) Sm. (Marattiaceae) and Trichomanes elegans L. C. Rich. (Hymenophyllaceae), is caused by thin film constructive interference. The ultrastructural basis for the film in D. nodosa is multiple layers of cellulose microfibrils in the adaxial cell walls of the adaxial epidermis. The apparent helicoidal arrangement of the fibrils is analogous to similar color production in arthropods. In T. elegans the blue-green coloration is caused by the remarkably uniform thickness and arrangement of grana in specialized chloroplasts adjacent to the adaxial wall of the adaxial epidermis. The selective advantage of this color production, if any, is unknown but apparently different from that previously studied in Selaginella.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirteens hade-adaptedr ain forest species were comparedw ith twelve sun-adaptedt ropical forest species for correlates to leaf optical properties (described previously in Amer. J. Bot. 73: 1100-1108). The two samples were similar in absorptance of quanta for photosynthesis, but the shade-adaptedt axa: 1) had significantlyl ower specificl eaf weights,i ndicatinga more metabolically efficient production of surface for quantum capture; 2) synthesized less chlorophyll per unit area; and 3) used less chlorophyll for capturing the same quanta for photosynthesis. The anatomical features that best correlate with this increased efficiency are palisade cell shape and chloroplast distribution. Palisade cells with more equal dimensions have more chloroplasts on their abaxial surfaces. This dense layer of chloroplasts maximizes the light capture efficiency limited by sieve effects. The more columnar palisade cells of sun-adapted taxa allow light to pass through the central vacuoles and spaces between cells, making chloroplasts less efficient in energy capture, but allowing light to reach chloroplasts in the spongy mesophyll. Pioneer species may be an exception to these two groups of species. Three pioneer taxa included in this study have columnar palisade cells that are extremely narrow and packed closely together. This layer allows little penetration of light, but exposure of the leaf undersurface may provide illumination of spongy mesophyll chloroplasts in these plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Why the leaves of many woody species accumulate anthocyanins prior to being shed has long puzzled biologists because it is unclear what effects anthocyanins may have on leaf function. Here, we provide evidence for red-osier dogwood (Cornus stolonifera) that anthocyanins form a pigment layer in the palisade mesophyll layer that decreases light capture by chloroplasts. Measurements of leaf absorbance demonstrated that red-senescing leaves absorbed more light of blue-green to orange wavelengths (495–644 nm) compared with yellow-senescing leaves. Using chlorophyll a fluorescence measurements, we observed that maximum photosystem II (PSII) photon yield of red-senescing leaves recovered from a high-light stress treatment, whereas yellow-senescing leaves failed to recover after 6 h of dark adaptation, which suggests photo-oxidative damage. Because no differences were observed in light response curves of effective PSII photon yield for red- and yellow-senescing leaves, differences between red- and yellow-senescing cannot be explained by differences in the capacities for photochemical and non-photochemical light energy dissipation. A role of anthocyanins as screening pigments was explored further by measuring the responses PSII photon yield to blue light, which is preferentially absorbed by anthocyanins, versus red light, which is poorly absorbed. We found that dark-adapted PSII photon yield of red-senescing leaves recovered rapidly following illumination with blue light. However, red light induced a similar, prolonged decrease in PSII photon yield in both red- and yellow-senescing leaves. We suggest that optical masking of chlorophyll by anthocyanins reduces risk of photo-oxidative damage to leaf cells as they senesce, which otherwise may lower the efficiency of nutrient retrieval from senescing autumn leaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The leaves of woody plants at Harvard Forest in Central Massachusetts, USA, changed color during senescence; 70% (62/89) of the woody species examined anatomically contained anthocyanins during senescence. Anthocyanins were not present in summer green leaves, and appeared primarily in the vacuoles of palisade parenchyma cells. Yellow coloration was a result of the unmasking of xanthophyll pigments in senescing chloroplasts. In nine red-senescing species, anthocyanins were not detectable in mature leaves, and were synthesized de novo in senescence, with less than 20 m g cm - 2 of chlorophyll remaining. Xanthophyll concentrations declined in relation to chlorophyll to the same extent in both yellow- and red-leaved taxa. Declines in the maximum photosystem II quantum yield of leaves collected prior to dawn were only slightly less in the red-senescing species, indicating no long-term protective activity. Red-leaved species had significantly greater mass/area and lower chlorophyll a / b ratios during senescence. Nitrogen tissue concentrations in mature and senescent leaves negatively correlated to anthocyanin concentrations in senescent leaves, weak evidence for more efficient nitrogen resorption in anthocyanic species. Shading retarded both chlorophyll loss and anthocyanin production in Cornus alternifolia , Acer rubrum , Acer saccharum , Quercus rubra and Viburnum alnifolium . It promoted chlorophyll loss in yellow-senescing Fagus grandifolia . A reduced red : far-red ratio did not affect this process. Anthocyanins did not increase leaf temperatures in Q. rubra and Vaccinium corymbosum on cold and sunny days. The timing of leaf-fall was remarkably constant from year to year, and the order of senescence of individual species was consistent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this research project was to contribute to the understanding of chloroplast movement in plants. Chloroplast movement in leaves from twenty tropical plant species ranging from cycads to monocots and varying in shade tolerance was examined by measuring changes in transmittance following 30 min. of exposure to white light at 1000 μmol m−2 s −1 in the wavelength range of 400–700 nm (photosynthetically active radiation, PAR). Leaf anatomical characteristics were also measured. Eighteen species increased significantly in transmittance (Δ T) at this level of illumination. ^ Chloroplast movement was significantly correlated with palisade cell width suggesting that cell dimensions are a significant constraint on chloroplast movement in the species examined. In addition, Δ T values were strongly correlated with values of an index of shade tolerance. ^ To further examine the relationship between palisade width and chloroplast movement, additional studies were conducted with a tropical aroid vine, Scindapsus aureus Schott. Scindapsus plants were grown under three different light treatments: 63% (control), 9.0% and 2.7% of full sunlight. Under these growing conditions plants produced markedly different palisade cell widths. Palisade cell width was again found to be correlated with transmittance changes. In addition, the observed increases in transmittance following exposure to the above illumination condition were correlated with absorbance of PAR. Fluorescence studies demonstrated that chloroplast movement helps protect Scindapsus aureus from the effects of photoinhibition when it is exposed to light at a higher intensity relative to the intensity of its normal environment. Ratios of variable fluorescence (Fv) to maximal fluorescence (Fm ) were higher in plants exposed to high light when chloroplasts moved than in plants where chloroplasts did not. ^ To further explore the role of chloroplast movement, studies were conducted to determine if transmittance changes could be induced in ten xerophytes at (1000 μmol m−2 s−1), as well as two stronger light intensities (1800 μmol m−2 s−1 and 2200 μmol m−2 s −1). Transmittance changes in the ten xerophytes were dependent upon the illumination intensity; nine out of the ten xerophytes changed in transmittance at 1800 μmol m−2 s−1. For the other two intensity levels, only three out of the ten xerophytes tested exhibited transmittance changes, and for two species, a negative Δ T value was obtained at 1000 μmol m−2 s−1 . No relationship was found between cell dimensions and chloroplast movement, although all species had large enough chlorenchyma cells to allow such movements. ^ The results of the study clearly show that in non-xerophytes, palisade cell anatomy is a strong constraint on chloroplast movement. This relationship may be the basis for the relationship between chloroplast movement and shade tolerance. Although absorbance changes are relatively small, chloroplast movement was clearly shown to reduce photoinhibition. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haptophyta are predominantly planktonic and phototrophic organisms that have their main distribution in marine environments worldwide. They are a major component of the microbial ecosystem, some form massive blooms and some are toxic. Haptophytes are significant players in the global carbonate cycle through photosynthesis and calcification. They are characterized by the haptonema, a third appendage used for attachment and food handling, two similar flagella, two golden-brown chloroplasts, and organic body scales that serve in species identification. Coccolithophores have calcified scales termed coccoliths. Phylogenetically Haptophyta form a well-defined group and are divided into two classes Pavlovophyceae and Coccolithophyceae (Prymnesiophyceae). Currently, about 330 species are described. Environmental DNA sequencing shows high haptophyte diversity in the marine pico- and nanoplankton, of which many likely represent novel species and lineages. Haptophyte diversity is believed to have peaked in the past and their presence is documented in the fossil record back to the Triassic, approximately 225 million years ago. Some biomolecules of haptophyte origin are extraordinarily resistant to decay and are thus used by geologists as sedimentary proxies of past climatic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haptophyta are predominantly planktonic and phototrophic organisms that have their main distribution in marine environments worldwide. They are a major component of the microbial ecosystem, some form massive blooms and some are toxic. Haptophytes are significant players in the global carbonate cycle through photosynthesis and calcification. They are characterized by the haptonema, a third appendage used for attachment and food handling, two similar flagella, two golden-brown chloroplasts, and organic body scales that serve in species identification. Coccolithophores have calcified scales termed coccoliths. Phylogenetically Haptophyta form a well-defined group and are divided into two classes Pavlovophyceae and Coccolithophyceae (Prymnesiophyceae). Currently, about 330 species are described. Environmental DNA sequencing shows high haptophyte diversity in the marine pico- and nanoplankton, of which many likely represent novel species and lineages. Haptophyte diversity is believed to have peaked in the past and their presence is documented in the fossil record back to the Triassic, approximately 225 million years ago. Some biomolecules of haptophyte origin are extraordinarily resistant to decay and are thus used by geologists as sedimentary proxies of past climatic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stromules are motile extensions of the plastid envelope membrane, whose roles are not fully understood. They are present on all plastid types but are more common and extensive on non-green plastids that are sparsely distributed within the cell. During tomato fruit ripening, chloroplasts in the mesocarp tissue differentiate into chromoplasts and undergo major shifts in morphology. In order to understand what factors regulate stromule formation, we analysed stromule biogenesis in tobacco hypocotyls and in two distinct plastid populations in tomato mesocarp. We show that increases in stromule length and frequency are correlated with chromoplast differentiation, but only in one plastid population where the plastids are larger and less numerous. We used tobacco hypocotyls to confirm that stromule length increases as plastids become further apart, suggesting that stromules optimise the plastid-cytoplasm contact area. Furthermore, we demonstrate that ectopic chloroplast components decrease stromule formation on tomato fruit chromoplasts, whereas preventing chloroplast development leads to increased numbers of stromules. Inhibition of fruit ripening has a dramatic impact on plastid and stromule morphology, underlining that plastid differentiation status, and not cell type, is a significant factor in determining the extent of plastid stromules. By modifying the plastid surface area, we propose that stromules enhance the specific metabolic activities of plastids. This is an electronic version of an Article published in The Plant Journal, August 2004, Volume 39, pp. 655-667. Copyright 2004 Blackwell Publishing Ltd and The Society for Experimental Biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elysia timida (Risso, 1818) three decades of research.— During the last 30 years, studies on Elysia timida (Risso, 1818) have addressed various aspects related to food sources, photosynthetic efficiency of kleptoplasts, population genetics, chemical ecology and reproductive biology, both in the Mediterranean Sea and in the Mar Menor coastal lagoon. E. timida shows a strong specific interaction with Acetabularia acetabulum, retaining functional chloroplasts for at least 45 days and obtaining extra energy in periods when food resources are scarce. It shows control of parapodia, avoiding pigment photodestruction under oversaturated light conditions. The chemical ecological relationships established between E. timida and its potential predator fish, Thalassoma pavo, have also been evaluated, and it has been found that that the extracts of the mollusc contain repellent and unpalatable polypropionate compounds. Population genetics has demonstrated the genetic divergence between populations showing high and significant values of FST and genetic distances, and at least six privative alleles that are not shared with Mediterranean populations have been detected in lagoon populations. This sacoglossan is a poecilogonic species, and its lagoon populations show a greater reproductive output than Mediterranean populations; they produce a greater number of egg masses and embyros per individual, and the capsules have a wider diameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbe associated molecular pattern (MAMP) receptors in plants recognize MAMPs and activate basal defences; however a complete understanding of the molecular and physiological mechanisms conferring immunity remains elusive. Pathogens suppress active defence in plants through the combined action of effector proteins. This talk presents results showing the chloroplast as a key component of early immune responses. MAMP perception triggers the rapid, large-scale suppression of nuclear encoded chloroplast-targeted genes (NECGs). Virulent Pseudomonas syringae effectors reprogramme NECG expression in Arabidopsis, target the chloroplast and inhibit photosynthetic CO2 assimilation through disruption of photosystem II. This activity prevents a chloroplastic reactive oxygen burst. These physiological changes precede bacterial multiplication and coincide with pathogen-induced abscisic acid (ABA) accumulation. MAMP pretreatment protects chloroplasts from effector manipulation, whereas application of ABA or the inhibitor of photosynthetic electron transport, DCMU, abolishes the MAMP-induced chloroplastic reactive oxygen burst, and enhances growth of a P. syringae hrpA mutant that fails to secrete effectors.